8th Class Mathematics Sample Paper Mathematics Sample Paper - 4

  • question_answer
    In a quadrilateral ABCD, DO and CO are the bisectors of \[\angle D\] and  \[\angle C\] respectively.
    Prove that \[\angle COD=\frac{1}{2}[\angle A+\angle B].\]

    Answer:

    In\[\Delta COD\], we have
    \[\angle COD+\angle \text{1}+\angle 2=180{}^\circ \]
    \[\Rightarrow \]   \[\angle COD\,=180{}^\circ -[\angle 1+\angle 2]\]
    \[\Rightarrow \]\[\angle COD\,=180{}^\circ -\left[ \frac{1}{2}\angle D+\frac{1}{2}\angle C \right]\]
    \[\Rightarrow \]\[\angle COD\,=180{}^\circ -\frac{1}{2}[\angle D+\angle C]\]
    But                  \[\angle A+\angle B+\angle C+\angle D=360{}^\circ \]
    \[\Rightarrow \]   \[\angle C+\angle D=360{}^\circ -(\angle A+\angle B)\]
    \[\Rightarrow \]   \[\angle COD=180{}^\circ -\frac{1}{2}[360{}^\circ -(\angle A+\angle B)]\]                                                                                              
    \[=\text{ }180{}^\circ -\frac{1}{2}\text{  }\left[ 360{}^\circ  \right]\text{ }+\text{ }\frac{1}{2}\text{ }\left[ \angle A\text{ }+\text{ }\angle B \right]\]
    \[=\text{ }180{}^\circ -180{}^\circ \text{ }+\text{ }\frac{1}{2}\text{ }\left[ \angle A\text{ }+\text{ }\angle B \right]\]                                                                                                                      
    \[=\frac{1}{2}(\angle A+\angle B)\]
    Thus,           \[\angle COD=\frac{1}{2}[\angle A+\angle B]\]
         


You need to login to perform this action.
You will be redirected in 3 sec spinner