Banking Quantitative Aptitude Sample Paper Quantitative Aptitude Sample Paper-48

  • question_answer
    If \[x+y=z,\]then the value of \[{{\cos }^{2}}x+{{\cos }^{2}}y+{{\cos }^{2}}z\]is

    A) \[1+2\sin x\sin y\sin z\]

    B) \[1-2\sin x\sin y\sin z\]

    C) \[1+2\cos x\cos y\cos z\]

    D) \[1-2\cos x\cos y\cos z\]

    E) None of the above

    Correct Answer: C

    Solution :

    Given, \[x+y=z\]
    Now, \[{{\cos }^{2}}x+{{\cos }^{2}}y+{{\cos }^{2}}z=?\]
    \[=1+\,\,({{\cos }^{2}}x-{{\sin }^{2}}y)+{{\cos }^{2}}z\]
    \[=(\cos x-\sin y)(\cos x+\sin y)\]
    \[=\left[ \cos x-\cos \left( \frac{\pi }{2}-y \right) \right]\left[ \cos x+\cos \left( \frac{\pi }{2}-y \right) \right]\]
    \[=\left[ -\,\,2\sin \frac{\left( x-\frac{\pi }{2}+y \right)}{2}\sin \frac{\left( x+\frac{\pi }{2}-y \right)}{2} \right]\]
    \[\left[ 2\cos \frac{\left( x+\frac{\pi }{2}-y \right)}{2}\cos \frac{\left( x-\frac{\pi }{2}+y \right)}{2} \right]\]
    \[=-\,\,\sin \left( x+\frac{\pi }{2}-y \right)\sin \left( x-\frac{\pi }{2}+y \right)\]
    \[=\cos (x-y)\cos (x+y)\]
    \[=1+\cos \,\,(x+y)\cdot \cos \,\,(x-y)+{{\cos }^{2}}z\]
    \[=1+\cos z\cos \,\,(x-y)+{{\cos }^{2}}z\]
    \[=1+\cos z\,\,[\cos \,\,(x-y)+cos\,\,(x+y)]\]
    \[=1+\cos z\]
    \[\left[ 2\cos \frac{(x-y+x+y)}{2}\cdot \cos \frac{(x-y-x-y)}{2} \right]\]
    \[=1+2\cos z\cdot \cos x\cdot \cos y\]
    \[=1+2\cos x\cdot \cos \,\,y\cdot cos\,\,z\]
     


You need to login to perform this action.
You will be redirected in 3 sec spinner