Banking Sample Paper SBI Junior Associates (PT) Sample Test Paper-1

  • question_answer The height of a triangle is equal to the perimeter of a square whose diagonal is \[6\sqrt{2}m\] and the base of the same triangle is equal to the side of a square whose area is\[324\,\,{{m}^{2}}\]. What is the area of the triangle?

    A) \[215\,\,{{m}^{2}}\]                

    B) \[216\,\,{{m}^{2}}\]    

    C)        \[220\,\,{{m}^{2}}\]    

    D)        \[195\,\,{{m}^{2}}\]

    E) \[223\,\,{{m}^{2}}\]

    Correct Answer: B

    Solution :

    Height of the triangle = Perimeter of the square = 4a \[\text{=4 }\!\!\times\!\!\text{ }\frac{\text{diagonal}}{\sqrt{\text{2}}}\text{=}\frac{\text{4 }\!\!\times\!\!\text{ 6}\sqrt{\text{2}}}{\sqrt{\text{2}}}\text{=24}\,\,\text{m}\] Base of the triangle\[=\sqrt{324}=18\,\,m\] \[\therefore \]Area of the triangle\[\text{=}\frac{\text{1}}{\text{2}}\text{ }\!\!\times\!\!\text{ Base }\!\!\times\!\!\text{ Height}\] \[=\frac{1}{2}\times 18\times 24=216\,\,{{m}^{2}}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner