JEE Main & Advanced Chemistry Chemical Kinetics / रासायनिक बलगतिकी Sample Paper Topic Test - Chemical Kinetics

  • question_answer
    Two substances A and B are present such that\[[{{A}_{0}}]=4[{{B}_{0}}]\] and half-life of A is 5 minute and that of B is 15 min. If they start decaying at the same time following 1st order kinetics, how much time later will the concentration of both of them would be same?

    A) 15 min    

    B) 10 min

    C) 5 min               

    D) 12 min

    Correct Answer: A

    Solution :

    Amount of A left in \[{{n}_{1}}\] halves \[={{\left( \frac{1}{2} \right)}^{{{n}_{1}}}}[{{A}_{0}}]\]
    Amount of B in \[{{n}_{2}}\] halves \[={{\left( \frac{1}{2} \right)}^{{{n}_{2}}}}[{{A}_{0}}]\]
    At the end halves, \[\frac{[{{A}_{0}}]}{{{2}^{ni}}}=\frac{[{{B}_{0}}]}{{{2}^{{{n}_{2}}}}}\]
    \[\Rightarrow \]   \[\frac{4}{{{2}^{{{n}_{1}}}}}=\frac{1}{{{2}^{{{n}_{2}}}}}\] As \[{{A}_{0}}=4{{B}_{0}}\]
    \[\therefore \]      \[\frac{{{2}^{{{n}_{1}}}}}{{{2}^{_{2}}}}=4\]
    \[\Rightarrow \]   \[{{2}^{{{n}_{1}}-{{n}_{2}}}}={{(2)}^{2}}\]
    \[\therefore \]      \[{{n}_{1}}-{{n}_{2}}=2\] so \[{{n}_{2}}={{n}_{1}}-2\]         …(i)
    Also,     \[t={{n}_{1}}\times {{t}_{1/2}}(A)\]
    \[t={{n}_{1}}\times {{t}_{1/2}}(A)\]
    \[t={{n}_{2}}\times {{t}_{1/2}}(B)\]
    Let conc. of both become equal after time (t)
    \[\therefore \]      \[\frac{{{n}_{1}}\times {{t}_{1/2}}(A)}{{{n}_{2}}\times {{t}_{1/2}}(B)}=1\]
    \[\Rightarrow \]   \[\frac{{{n}_{1}}\times 5}{{{n}_{2}}\times 5}=1\]
    \[\frac{{{n}_{1}}}{{{n}_{2}}}=3\]                                           …(ii)
    From equation (i) and (ii),
    \[{{n}_{1}}=3\] and \[{{n}_{2}}=1\]
    \[t=3\times 5=15\,\min \]

You need to login to perform this action.
You will be redirected in 3 sec spinner