A) \[\frac{4L}{u}\]
B) \[\frac{3L}{u}\]
C) \[\frac{6L}{u}\]
D) \[\frac{9L}{u}\]
Correct Answer: C
Solution :
[c]\[\tan \theta =\frac{PR}{OR}=\frac{AC}{PC}\]\[\Rightarrow \] \[\frac{3L/2}{L}=\frac{AC}{2L}\,\,\,\,\,\Rightarrow \,\,\,AC=3L\] |
\[\tan \alpha =\frac{QR}{OR}=\frac{BD}{DQ}\]\[\Rightarrow \] \[BD=\frac{L/2}{L}\times 2L=L\] |
\[\therefore \] \[AB=AD-BD=(3L+L)-L=3L\] |
From A to B observer can observe \[{{M}_{1}}\] |
Making similar diagram for lower mirror |
Total visible distance \[=3L+3L=6L\] |
Total time \[=\frac{6L}{u}\] |
You need to login to perform this action.
You will be redirected in
3 sec