JEE Main & Advanced AIEEE Paper (Held On 11 May 2011)

  • question_answer
    Statement-1 : Determinant of a skew-symmetric matrix of order 3 is zero. Statement - 2 : For any matrix \[A,\det {{(A)}^{T}}=\det (A)\] and \[\det (-A)=-det(A).\] Where det denotes the determinant of matrix B. Then :     AIEEE  Solved  Paper (Held On 11 May  2011)

    A)  Both statements are true                  

    B)  Both statements are false

    C)  Statement-1 is false and statement-2        

    D)  Statement-1 is true and statement-2 is false

    Correct Answer: D

    Solution :

                    Statement-1 : Determinant of a skew sysmmetric matrix of odd order is zero Statement-2 : \[\det ({{A}^{T}})=\det (A)\]\[\det (-A)={{(-1)}^{n}}\det (A)\]where A is a\[n\times n\]order matrix

You need to login to perform this action.
You will be redirected in 3 sec spinner