JEE Main & Advanced AIEEE Solved Paper-2003

  • question_answer
    If \[f(a+b-x)=f(x)\], then \[\int_{a}^{b}{x\,f(x)\,dx}\] is equal to     AIEEE  Solved  Paper-2003

    A) \[\frac{a+b}{2}\int_{a}^{b}{f(b-x)\,dx}\]

    B)       \[\frac{a+b}{2}\int_{a}^{b}{f(x)\,dx}\]

    C) \[\frac{b-a}{2}\int_{a}^{b}{f(x)\,dx}\]

    D)       \[\frac{a+b}{2}\int_{a}^{b}{f(a+b+x)\,dx}\]

    Correct Answer: B

    Solution :

    \[\int_{a}^{b}{x\,f(x)dx=}\int_{a}^{b}{(a+b-x)\,f(a+b-x)\,dx}\] Let              \[l=\int_{a}^{b}{x\,f(x)\,dx}\]                                    ... (i) \[\Rightarrow \]   \[l=\int_{a}^{b}{(a+b-x)\,f(a+b-x)dx}\] \[\Rightarrow \]   \[l=\int_{a}^{b}{(a+b-x)f(x)dx}\]                     \[[\because f(a+b-x)=f(x)\], given] \[\Rightarrow \]   \[l=(a+b)\int_{a}^{b}{f(x)dx-\int_{a}^{b}{x\,f(x)dx}}\]             \[\Rightarrow \]   \[l=(a+b)\,\int_{a}^{b}{f(x)dx-l}\]            [from Eq. (i)] \[\Rightarrow \]   \[2\,l=(a+b)\int_{a}^{b}{f(x)dx}\] \[\Rightarrow \]   \[l=\left( \frac{a+b}{2} \right)\,\int_{a}^{b}{f(x)\,dx}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner