JEE Main & Advanced AIEEE Solved Paper-2003

  • question_answer
    Let \[f(x)\] be a function satisfying \[f'(x)=f(x)\] with \[f(0)=1\] and \[g(x)\] be a function that satisfies \[f(x)+g(x)={{x}^{2}}\]. Then, the value of the integral \[\int_{0}^{1}{f(x)\,g(x)\,dx}\], is     AIEEE  Solved  Paper-2003

    A)                         \[e-\frac{{{e}^{2}}}{2}-\frac{5}{2}\]                        

    B) \[e+\frac{{{e}^{2}}}{2}-\frac{3}{2}\]                       

    C) \[-\frac{{{e}^{2}}}{2}-\frac{3}{2}\]                           

    D) \[e+\frac{{{e}^{2}}}{2}+\frac{5}{2}\]

    Correct Answer: C

    Solution :

    Given, \[f'(x)=f(x)\] and \[f(0)=1\] Then, let                  \[f(x)={{e}^{x}}\]             ?.. (i) Also,          \[f(x)+g(x)={{x}^{2}}\]                                     \[g(x)={{x}^{2}}-{{e}^{x}}\]         ... (ii) Now, \[\int_{0}^{1}{f(x)g(x)dx=\int_{0}^{1}{{{e}^{x}}({{x}^{2}}-{{e}^{x}})dx}}\]                                                     [from Eqs. (i) and (ii)] \[=\int_{0}^{1}{({{x}^{2}}{{e}^{x}}-{{e}^{2x}})dx}\] \[=\int_{0}^{1}{{{x}^{2}}{{e}^{x}}dx-\int_{0}^{1}{{{e}^{2x}}dx}}\] \[=[{{x}^{2}}{{e}^{x}}-\int{2x{{e}^{x}}dx]_{0}^{1}-\frac{1}{2}[{{e}^{2x}}]_{0}^{1}}\] \[=[{{x}^{2}}{{e}^{x}}-2\,(x{{e}^{x}}-{{e}^{x}})]_{0}^{1}-\frac{1}{2}[{{e}^{2}}-{{e}^{o}})\] \[=[{{x}^{2}}{{e}^{x}}-2\,x{{e}^{x}}+2{{e}^{x}})]_{0}^{1}-\frac{1}{2}({{e}^{2}}1)\] \[=[({{x}^{2}}-2x+2){{e}^{x}}]_{0}^{1}-\frac{1}{2}{{e}^{2}}+\frac{1}{2}\] \[=[(1-2+2){{e}^{1}}-(0-0+2){{e}^{0}}]-\frac{1}{2}{{e}^{2}}+\frac{1}{2}\] \[=(e-2)-\frac{1}{2}{{e}^{2}}+\frac{1}{2}=e-\frac{1}{2}{{e}^{2}}-\frac{3}{2}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner