JEE Main & Advanced AIEEE Solved Paper-2004

  • question_answer
    If\[\int_{0}^{\pi }{x}f(\sin x)dx=A\int_{0}^{\pi /2}{f(\sin x)}dx,\]then A is equal to

    A) 0      

    B)                        \[\pi \]                 

    C)        \[\frac{\pi }{4}\]              

    D)        \[2\,\pi \]

    Correct Answer: B

    Solution :

    \[\int_{0}^{a}{f(x)}dx=\int_{0}^{a}{f(a-x)}dx\] Let        \[l=\int_{0}^{\pi }{xf(\sin x)}dx\]                             ...(i) \[\Rightarrow \]\[l=\int_{0}^{\pi }{(\pi -x)}f[\sin (\pi -x)]dx\] \[\Rightarrow \]\[l=\int_{0}^{\pi }{(\pi -x)}f(\sin x)dx\]                   ...(ii) On adding Eqs. (i) and (ii), we get \[2l=\int_{0}^{\pi }{(x+\pi -x)}f(\sin x)dx\] \[\Rightarrow \] \[2l=\pi \int_{0}^{\pi }{f(\sin x)dx}\] \[\Rightarrow \] \[2l=2\pi \int_{0}^{\pi /2}{f(\sin x)dx}\] \[\Rightarrow \] \[l=\pi \int_{0}^{\pi /2}{f(\sin x)dx}\] \[\Rightarrow \] \[A\int_{0}^{\pi /2}{f(\sin x)dx=\pi }\int_{0}^{\pi /2}{f(\sin x)}dx\]                                 \[[\because l=A\int_{0}^{\pi /2}{f(\sin x)dx}]\] \[\Rightarrow \]               \[A=\pi \]


You need to login to perform this action.
You will be redirected in 3 sec spinner