JEE Main & Advanced AIEEE Solved Paper-2006

  • question_answer
    If the expansion in powers of\[x\]of the function \[\frac{1}{(1-ax)(1-bx)}\]is\[{{a}_{0}}+{{a}_{1}}x+{{a}_{2}}{{x}^{2}}+{{a}_{2}}{{x}^{3}}+....,\]then\[{{a}_{n}}\]is     AIEEE  Solved  Paper-2006

    A) \[\frac{{{a}^{n}}-{{b}^{n}}}{b-a}\]           

    B)        \[\frac{{{a}^{n+1}}-{{b}^{n+1}}}{b-a}\] 

    C)        \[\frac{{{b}^{n+1}}-{{a}^{n+1}}}{b-a}\] 

    D)        \[\frac{{{b}^{n}}-{{a}^{n}}}{b-a}\]

    Correct Answer: C

    Solution :

    Since,\[{{(1-ax)}^{-1}}{{(1-bx)}^{-1}}\] \[(1-ax+{{a}^{2}}{{x}^{2}}+.....)(1+bx+{{b}^{2}}{{x}^{2}}+....)\] Hence,\[{{a}_{n}}=\]Coefficient of\[{{x}^{n}}\]in\[{{(1-ax)}^{-1}}{{(1-bx)}^{-1}}\] \[={{a}^{0}}{{b}^{n}}+a{{b}^{n-1}}+.......{{a}^{n}}{{b}^{0}}\] \[={{a}^{0}}{{b}^{n}}\left[ \frac{{{\left( \frac{a}{b} \right)}^{n+1}}-1}{\frac{a}{b}-1} \right]\] \[=\frac{{{b}^{n}}({{a}^{n+1}}-{{b}^{n+1}})}{a-b}.\frac{b}{{{b}^{n+1}}}\] \[=\frac{{{a}^{n+1}}-{{b}^{n+1}}}{a-b}=\frac{{{b}^{n+1}}-{{a}^{n+1}}}{b-a}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner