JEE Main & Advanced AIEEE Solved Paper-2006

  • question_answer
    \[\int_{0}^{\pi }{x\,f\,(\sin \,x)\,dx}\] is equal to     AIEEE  Solved  Paper-2006

    A) \[\pi \int_{0}^{\pi }{f(\sin x)}dx\]

    B)        \[\frac{\pi }{2}\int_{0}^{\pi /2}{f(\sin x)}dx\]     

    C) \[\pi \int_{0}^{\pi /2}{f(\cos x)}dx\]

    D)        \[\pi \int_{0}^{\pi /2}{f(\cos x)}dx\]

    Correct Answer: C

    Solution :

    Let \[l=\int_{0}^{\pi }{xf(\sin x)dx}\]                      ...(i) \[\Rightarrow \] \[l=\,\int_{0}^{\pi }{(\pi -x)f[\sin (\pi -x)dx}\] \[\Rightarrow \] \[l=\,\int_{0}^{\pi }{(\pi -x)f(\sin x)dx}\]                ...(ii) On adding Eqs. (i) and (ii), we get \[2l=\int_{0}^{\pi }{\pi \,f(\sin x)dx}\,\,\Rightarrow \,\,\,l=\frac{\pi }{2}\,\int_{0}^{\pi }{f(\sin x)dx}\] \[\Rightarrow \]\[l=\pi \int_{0}^{\pi }{f(\sin x)dx}\] \[\Rightarrow \]\[l=\pi \int_{0}^{\pi /2}{f\left[ \sin \left( \frac{\pi }{2}-x \right)dx=\pi \int\limits_{0}^{\pi /2}{f(\cos x)dx} \right]}\] [\[\because f(\cos x)\]is an even function]


You need to login to perform this action.
You will be redirected in 3 sec spinner