JEE Main & Advanced AIEEE Solved Paper-2010

  • question_answer
    Let there be a spherically symmetric charge distribution with charge density varying as\[\rho (r)={{\rho }_{0}}\left( \frac{5}{4}-\frac{r}{R} \right)\]up to\[r=R,\]and\[\rho (r)=0\]for\[r>R,\]where r is the distance from the origin. The electric field at a distance \[r(r<R)\]from the origin is given by ?       AIEEE  Solved  Paper-2010

    A) \[\frac{{{\rho }_{0}}r}{3{{\varepsilon }_{0}}}\left( \frac{5}{4}-\frac{r}{R} \right)\]

    B)        \[\frac{4\pi {{\rho }_{0}}r}{3{{\varepsilon }_{0}}}\left( \frac{5}{3}-\frac{r}{R} \right)\]

    C)        \[\frac{{{\rho }_{0}}r}{4{{\varepsilon }_{0}}}\left( \frac{5}{3}-\frac{r}{R} \right)\]

    D)        \[\frac{4{{\rho }_{0}}r}{3{{\varepsilon }_{0}}}\left( \frac{5}{4}-\frac{r}{R} \right)\]

    Correct Answer: C

    Solution :

    \[r<R\] \[\oint{E.dS}=\frac{\int{{{\rho }_{v}}dv}}{{{\varepsilon }_{0}}}\] \[E.4\pi {{r}^{2}}=\int\limits_{0}^{r}{\frac{{{\rho }_{0}}}{{{\varepsilon }_{0}}}}\left( \frac{5}{4}-\frac{r}{R} \right)4\pi {{r}^{2}}dr\] \[E.4\pi {{r}^{2}}=\frac{{{\rho }_{0}}4\pi }{{{\varepsilon }_{0}}}\left[ \int\limits_{0}^{r}{\frac{5}{4}{{r}^{2}}dr-\int\limits_{0}^{r}{\frac{{{r}^{3}}}{R}dr}} \right]\] \[E.4\pi {{r}^{2}}=\frac{4\pi {{\rho }_{0}}}{{{\varepsilon }_{0}}}\left[ \frac{5}{4}\frac{{{r}^{3}}}{3}-\frac{{{r}^{4}}}{4R} \right]\] \[E=\frac{{{\rho }_{0}}}{{{\varepsilon }_{0}}}\left[ \frac{5}{4}\frac{r}{3}-\frac{{{r}^{2}}}{4R} \right]\] \[\]


You need to login to perform this action.
You will be redirected in 3 sec spinner