• question_answer
                    Two equal masses \[{{m}_{1}}\] and \[{{m}_{2}}\] moving along the same straight line with velocities + 3 m/s and ?5 m/s respectively collide elastically. Their velocities after the collision will be respectively:

    A)                 + 4 m/s for both              

    B)                 - 3m/s and + 5 m/s         

    C)                 - 4 m/s and + 4 m/s        

    D)                 - 5 m/s and + 3 m/s

    Correct Answer: D

    Solution :

                    Key Idea: In an elastic collision, linear momentum remains conserved.                 Given: \[{{u}_{1}}=3\,m/s,\,{{u}_{2}}=-5m/s,\,{{m}_{1}}={{m}_{2}}=m\]                 According to principle of conservation of linear momentum                 \[{{m}_{1}}{{u}_{1}}+{{m}_{2}}{{u}_{2}}={{m}_{1}}{{v}_{1}}+{{m}_{2}}{{v}_{2}}\]                 \[m\times 3-m\times 5=m{{v}_{1}}+m{{v}_{2}}\]                 or            \[{{v}_{1}}+{{v}_{2}}=-2\]                                             ...(i)                 In an elastic collision,                 \[e=\frac{{{v}_{2}}-{{v}_{1}}}{{{u}_{1}}-{{u}_{2}}}\] \[\Rightarrow {{v}_{2}}-{{v}_{1}}=e\,({{u}_{1}}-{{u}_{2}})\] \[\Rightarrow {{v}_{2}}-{{v}_{1}}=(1)\,(3+5)\]\[(\because \,e=1)\] \[\Rightarrow {{v}_{1}}-{{v}_{2}}=-8\]                                    ...(ii)                 Adding Eqs. (i) and (ii), we obtain                 \[2{{v}_{1}}=-\,10\,\]                 \[\Rightarrow {{v}_{1}}=-5\,m/s\]                 From Eq. (i),                 \[{{v}_{2}}=-2-{{v}_{1}}=-2+5=3\,m/s\]                 Thus, \[{{v}_{1}}=-5m/s\,,\,{{v}_{2}}=+3\,m/s\]                 Alternative: If two bodies collide elastically, then their velocities are interchanged. Since, it is an elastic collision hence, velocities after collision will be -5 m/s and 3 m/s.

You need to login to perform this action.
You will be redirected in 3 sec spinner