NEET AIPMT SOLVED PAPER 2000

  • question_answer
                    A particle moves along a straight line such that its displacement at any time t is given by \[s=3{{t}^{3}}+7{{t}^{2}}+14t+5\]. The acceleration of the particle at t = 1 s is:                                    

    A)                 \[18\,\,m/{{s}^{2}}\]

    B)                 \[32\,\,m/{{s}^{2}}\]

    C)                 \[29\,m/{{s}^{2}}\]

    D)                 \[24\,\,m/{{s}^{2}}\]

    Correct Answer: B

    Solution :

                    The displacement of a particle along a straight line is                 \[s=3{{t}^{3}}+7{{t}^{2}}+14t+5....(i)\]                 Differentiating Eq. (i) with respect to time, which gives the velocity                 \[v=\frac{ds}{dt}\]                 \[=\frac{d}{dt}(3{{t}^{3}}+7{{t}^{2}}+14t+5)\]                 \[=\frac{d}{dt}(3{{t}^{3}})+\frac{d}{dt}(7{{t}^{2}})+\frac{d}{dt}(14t)+\frac{d}{dt}(5)\]                 \[v=3\frac{d}{dt}\,({{t}^{3}})+7\frac{d}{dt}({{t}^{2}})+14\frac{d}{dt}(t)+0....(ii)\]                 (as differentiation of a constant is zero)                 Now use  \[\frac{d}{dt}({{x}^{n}})=n{{x}^{n-1}}\]                 \[So,v=3(3)\,{{t}^{3-1}}+7(2)\,({{t}^{2-1}})+14\,({{t}^{1-1}})\]                 \[\Rightarrow v=9{{t}^{2}}+14+14....(iii)\] \[(\because \,{{t}^{o}}=1)\]                 Again differentiating Eq. (iii) with respect to time, which gives the acceleration                 \[a=\frac{dv}{dt}=\frac{d}{dt}(9{{t}^{2}}+14t+14)\]                 \[=18t+14+0\]                   \[=18t+14\]                 At t = 1 s,                 a = 18 (1) + 14                 \[=18+14\,=32\,m/{{s}^{2}}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner