NEET AIPMT SOLVED PAPER 2002

  • question_answer
                    A mass is suspended separately by two springs of spring constants \[{{k}_{1}}\] and \[{{k}_{2}}\] in successive order. The time periods of oscillations in the two cases are \[{{T}_{1}}\] and \[{{T}_{2}}\] respectively. If the same mass be suspended by connecting the two springs in parallel, (as shown in figure) then   the   time   period   of oscillations is T. The correct relation is:                                                                                                                                             

    A)                 \[{{T}^{2}}=T_{1}^{2}+T_{2}^{2}\]           

    B)                 \[{{T}^{-2}}=T_{1}^{-2}+T_{2}^{-2}\]

    C)                 \[{{T}^{-1}}=T_{1}^{-1}+T_{2}^{-1}\]

    D)                 \[T={{T}_{1}}+{{T}_{2}}\]

    Correct Answer: B

    Solution :

                    Key Idea: For a vertical spring-block system time period can be written as \[T=2\pi \sqrt{\frac{l}{g}}\].                 We can write time period for a vertical spring-block system as                 \[T=2\pi \sqrt{\frac{l}{g}}\]                 Here, l is extension in the spring when the mass m is suspended from the spring.                 This can be seen as under:                 kl = mg       (in equilibrium  position) \[\Rightarrow \]               \[\frac{m}{k}=\frac{l}{g}\] \[\therefore T=2\pi \sqrt{\frac{m}{k}}\]                 \[\therefore {{T}_{1}}=2\pi \sqrt{\frac{m}{{{k}_{1}}}}\Rightarrow \,\,{{k}_{1}}=4{{\pi }^{2}}\frac{m}{T_{1}^{2}}\,.....(i)\]                 \[{{T}_{2}}=2\pi \sqrt{\frac{m}{{{k}_{2}}}}\Rightarrow \,{{k}_{2}}=4{{\pi }^{2}}\frac{m}{T_{2}^{2}}....(ii)\]                 Since springs are in parallel, effective force constant                 \[k={{k}_{1}}+{{k}_{2}}\] \[\therefore T=2\pi \,\sqrt{\frac{m}{{{k}_{1}}+{{k}_{2}}}}\] \[\Rightarrow {{k}_{1}}+{{k}_{2}}=4{{\pi }^{2}}\frac{m}{{{T}^{2}}}...(iii)\]                 Substituting value of \[{{k}_{1}}\] and \[{{k}_{2}}\] from Eqs. (i) and (ii) in Eq. (iii) we get                 \[4{{\pi }^{2}}\frac{m}{T_{1}^{2}}+4{{\pi }^{2}}\frac{m}{T_{2}^{2}}=4{{\pi }^{2}}\frac{m}{{{T}^{2}}}\] \[\Rightarrow \frac{1}{{{T}^{2}}}=\frac{1}{T_{1}^{2}}+\frac{1}{T_{2}^{2}}\] \[\Rightarrow {{T}^{-2}}=T_{1}^{-2}+T_{2}^{-2}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner