NEET AIPMT SOLVED PAPER 2003

  • question_answer
                    An equiconvex lens is cut into two halves along (i) XOX' and (ii) YOY' as shown in the figure. Let \[f,\,f',\,f''\] be the focal lengths of the complete lens, of each half in case (i), and of each half in case (ii), respectively.                 Choose the correct statement from the following:

    A)                                                                                            \[f'=f,\,\,f''=f\] 

    B)                 \[f'=2f,\,\,f''=2f\]            

    C)                 \[f'=f,\,\,f''=2f\]              

    D)                 \[f'=2f,\,\,f''=f\]

    Correct Answer: C

    Solution :

                    Initially, the focal length of equiconvex lens is \[\frac{1}{f}=(\mu -1)\,\left( \frac{1}{{{R}_{1}}}-\frac{1}{{{R}_{2}}} \right)\]                                                ....(i)                 \[\frac{1}{f}=(\mu -1)\,\left( \frac{1}{R}-\frac{1}{-R} \right)=\frac{2\,(\mu -1)}{R}\]                 Case I: When lens is cut along XOX?, then each half is again equiconvex with                 \[{{R}_{1}}=+R,\,{{R}_{2}}=-R\]                 Thus,     \[\frac{1}{f}=(\mu -1)\,\left[ \frac{1}{R}-\frac{1}{(-R)} \right]\]                 \[=(\mu -1)\,\left[ \frac{1}{R}+\frac{1}{R} \right]\]                 \[=(\mu -1)\,\frac{2}{R}=\frac{1}{f}\]                 \[\Rightarrow f'=f\]                 Case II: When lens is cut along YOY?, then each half becomes plano-convex with                 \[{{R}_{1}}=+R,\,{{R}_{2}}=\infty \]                 Thus,     \[\frac{1}{f''}=(\mu -1)\,\left( \frac{1}{{{R}_{1}}}+\frac{1}{{{R}_{2}}} \right)\]                 \[=(\mu -1)\,\left( \frac{1}{R}-\frac{1}{\infty } \right)\]                 \[=\frac{(\mu -1)}{R}=\frac{1}{2f}\]                 Hence,  \[f'=f,\,f''=2f\]


You need to login to perform this action.
You will be redirected in 3 sec spinner