NEET AIPMT SOLVED PAPER SCREENING 2007

  • question_answer
                    A wheel has angular acceleration of \[3.0\,\,rad/{{s}^{2}}\] and an initial angular speed of 2.00 rad/s. In a time of 2 s it has rotated through an angle (in radian) of:                                                                                                         

    A)                  6                            

    B)                  10         

    C)                  12        

    D)                  4

    Correct Answer: B

    Solution :

                              Key Idea: Angular acceleration is time derivative of angular speed and angular speed is time derivative of angular displacement.                 By definition      \[\alpha =\frac{d\omega }{dt}\]                 i.e.,        \[d\omega =\alpha \,dt\]                 So, if in time t the angular speed of a body changes from \[{{\omega }_{0}}\,to\,\omega \]                 \[\int_{{{\omega }_{0}}}^{\omega }{d\omega =\int_{0}^{t}{\alpha \,dt}}\]                 If \[\alpha \] is constant                 \[\omega -{{\omega }_{0}}=\alpha \,t\]                 or            \[\omega ={{\omega }_{0}}+\alpha \,t...(i)\]                 Now, as by definition                 \[\omega =\frac{d\theta }{dt}\]                 Eq. (i) becomes                 \[\frac{d\theta }{dt}={{\omega }_{0}}+\alpha \,t\]                 i.e.,        \[d\theta =({{\omega }_{0}}+\alpha \,t)\,dt\]                 So, if in time t angular displacement is \[\theta \].                 \[\int_{0}^{\theta }{d\theta =\int_{0}^{t}{({{\omega }_{0}}+\alpha t)dt}}\]                 or            \[\theta ={{\omega }_{0}}t+\frac{1}{2}\alpha \,{{t}^{2}}\]                                             .....(ii)                 Given,  \[\alpha =3.0\,rd/{{s}^{2}},\,{{\omega }_{0}}=2.0\,\,rad/s,\,\,t=2\,s\]                 Hence,                  \[\theta =2\times 2+\frac{1}{2}\times 3\times {{(2)}^{2}}\]                 or            \[\theta =4+6=10\,rad\]                 Note:    Eqs. (i) and (ii) are similar to first and second equations of linear motion.


You need to login to perform this action.
You will be redirected in 3 sec spinner