AMU Medical AMU Solved Paper-2005

  • question_answer
    We wish to see inside an atom. Assuming the atom to have a diameter of 100 pm, this means that one must be able to resolve a width of say 10 pm. If an electron microscope is used, the minimum electron energy required is about

    A)  15keV                                 

    B)  1.5 keV

    C)  150 keV                              

    D)  1.5MeV

    Correct Answer: A

    Solution :

                     The de-Broglie wavelength \[(\lambda )\] is given by                 \[\lambda =\frac{h}{p}=\frac{h}{mv}\] where h is Plancks constant, m the mass and v the velocity. Given,   \[\lambda =10\,pm={{10}^{-11}}m\],                 \[m=9.1\times {{10}^{-31}}kg\],                 \[h=6.6\times {{10}^{-34}}J-s\]. \[\therefore \]  \[v=\frac{h}{m\,\lambda }=\frac{6.6\times {{10}^{-34}}}{9.1\times {{10}^{-31}}\times {{10}^{-11}}}\] \[\Rightarrow \]               \[v=7.25\times {{10}^{7}}m/s\] Also, kinetic energy is the energy possessed due to velocity (v) is given by                 \[KE=\frac{1}{2}m\,{{v}^{2}}\] Given,   \[m=9.1\times {{10}^{-31}}kg\],                 \[v=7.25\times {{10}^{7}}\,m/s\] \[\therefore \]  \[KE=\frac{1}{2}\times 9.1\times {{10}^{-31}}\times {{(7.25\times {{10}^{7}})}^{2}}\] Since,    \[1\,eV=1.6\times {{10}^{-19}}J\] \[\therefore \]  \[KE=\frac{1}{2}\times 9.1\times {{10}^{-31}}\times \frac{{{(7.25\times {{10}^{7}})}^{2}}}{1.6\times {{10}^{-19}}}\]                 = 15 keV


You need to login to perform this action.
You will be redirected in 3 sec spinner