AMU Medical AMU Solved Paper-2010

  • question_answer
    The ratio of the de-Broglie wavelength of an electron of energy 10 eV to that of person of  mass 66 kg travelling at a speed of 100 km/h is of the order of

    A) \[\text{1}{{0}^{\text{34}}}\]                                      

    B)  \[\text{1}{{0}^{\text{27}}}\]

    C) \[\text{1}{{0}^{\text{17}}}\]                                      

    D)  \[\text{1}{{0}^{-\text{1}0}}\]

    Correct Answer: B

    Solution :

                     Mass of electron \[{{m}_{e}}=9.11\times {{10}^{-31}}kg\] Kinetic energy \[K=10\,\,eV=10\times 1.6\times {{10}^{-19}}\]                                                 \[=1.6\times {{10}^{-18}}J\] de-Broglie wavelength, \[{{\lambda }_{e}}=\frac{h}{\sqrt{2{{m}_{e}}}K}\]            ... (i) Mass of man m = 66 kg                 Speed v = 100 km/h                                 \[=100\times \frac{5}{18}m/s\] de-Broglie wavelength                 \[\lambda =\frac{h}{mv}\]                           ... (ii) From Eqs. (i) and (ii), we get                 \[\frac{{{\lambda }_{e}}}{\lambda }=\frac{h}{\sqrt{2{{m}_{e}}K}}\times \frac{mv}{h}\]                 \[=\frac{mv}{\sqrt{2{{m}_{e}}K}}\] \[=\frac{66\times 100\times \frac{5}{18}}{\sqrt{2\times 9.11\times {{10}^{-31}}\times 10\times 1.6\times {{10}^{-19}}}}\] \[=\frac{66\times 100\times \frac{5}{18}}{1.7\times {{10}^{-24}}}=1.078\times {{10}^{-27}}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner