BHU PMT BHU PMT (Mains) Solved Paper-2009

  • question_answer
    The rate of flow of glycerine of density\[1.25\times \] \[{{10}^{3}}kg{{m}^{-3}}\]through the conical section of a pipe if the radii of its ends are 0.1 m and 0.04 m and the pressure drop across its length \[10\text{ }N{{m}^{-2}}\]is

    A)  \[6.93\times {{10}^{-4}}{{m}^{3}}{{s}^{-1}}\]     

    B) \[7.8\times {{10}^{-4}}{{m}^{3}}{{s}^{-1}}\]

    C)  \[10.4\times {{10}^{-5}}{{m}^{3}}{{s}^{-1}}\]     

    D) \[14.5\times {{10}^{-5}}{{m}^{3}}{{s}^{-1}}\]

    Correct Answer: A

    Solution :

                     From Bernoulli's theorem                 \[{{p}_{1}}+\frac{1}{2}\rho v_{1}^{2}={{P}_{2}}\frac{1}{2}\rho v_{2}^{2}\]                 \[\therefore \]\[{{p}_{1}}-{{p}_{2}}=\frac{1}{2}\rho (v_{2}^{2}-v_{1}^{2})\]                 \[\therefore \]\[10=\frac{1}{2}\times 1.25\times {{10}^{3}}(v_{2}^{2}-v_{1}^{2})\]                 \[\therefore \]\[v_{2}^{2}-v_{1}^{2}=\frac{10\times 2}{1.25\times {{10}^{3}}}=16\times {{10}^{-3}}\]     ?(i)                 Also, from equation of continuity                 \[={{A}_{1}}{{v}_{1}}={{A}_{2}}{{v}_{2}}\]                 Or\[\pi r_{1}^{2}{{v}_{1}}=\pi r_{2}^{2}{{v}_{2}}\]                 \[\therefore \]\[\frac{{{v}_{1}}}{{{v}_{2}}}={{\left[ \frac{{{r}_{2}}}{{{r}_{1}}} \right]}^{2}}=\frac{0.04}{0.1}=0.4\]                 ie,         \[{{v}_{1}}=0.4\,{{v}_{2}}\]                              ?.(ii)                 Substituting this value in Eq. (i)                 \[v_{2}^{2}-{{(0.4{{v}_{2}})}^{2}}=16\times {{10}^{-3}}\]                 \[\Rightarrow \] \[{{v}_{2}}=1.38\times {{10}^{-1}}=0.138\text{ }m{{s}^{-1}}\]                 Rate of flow of glycerine \[v={{A}_{2}}{{v}_{2}}\]                 \[=\pi r_{2}^{2}{{v}_{2}}\]                 \[=6.93\times {{10}^{-4}}{{m}^{3}}{{s}^{-1}}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner