BHU PMT BHU PMT (Mains) Solved Paper-2009

  • question_answer

    Directions : In the following question more than one of the answers given may be correct. Select the correct answer and mark it according to the code:

    When photons of energy 4.25 eV strike the surface of metal A, the ejected photoelectrons have maximum kinetic energy, \[{{T}_{A}}\]eV and de-Broglie wavelength\[{{\lambda }_{A}}\]. The maximum kinetic energy of photoelectrons liberated from another metal B by photons of energy 4.70 eV is\[{{T}_{B}}=({{T}_{A}}-1.50)eV\]. If the de-Broglie wave- length of these photoelectrons is \[{{\lambda }_{B}}=2{{\lambda }_{A}},\] then (1) the work function of A is 2.25 eV (2) the work function of B is 4.20 eV (3)\[{{T}_{A}}=2.00\text{ }eV\] (4) \[{{T}_{B}}=2.75\text{ }eV\]

    A)  1, 2 and 3 are correct

    B)  1 and 2 are correct

    C)   2 and 4 are correct

    D)  1 and 3 are correct

    Correct Answer: A

    Solution :

                     Consider metal A incident energy = work function + maximum kinetic energy of photoelectrons.                 \[\therefore \]  \[4.25={{W}_{A}}+{{T}_{A}}\]                      ...(i)                 Kinetic energy\[=\frac{{{p}^{2}}}{2m}\]where p = momentum                 \[\therefore \]\[{{T}_{A}}=\frac{p_{A}^{2}}{2m}=\frac{1}{2m}{{\left( \frac{h}{{{\lambda }_{A}}} \right)}^{2}}\]by de-Broglie equation                 \[\therefore \]\[{{T}_{A}}=\frac{1}{2m}{{\left( \frac{h}{{{\lambda }_{A}}} \right)}^{2}}\]                               ?..(ii)                 Consider metal B                 \[4.7={{W}_{B}}+({{T}_{A}}-1.5)\]                         ...(iii)                 \[{{T}_{B}}=\frac{1}{2m}{{\left( \frac{h}{{{\lambda }_{B}}} \right)}^{2}}\]                              ?.(iv)                 From Eqs. (iv) and (ii) we get                 \[\frac{{{T}_{B}}}{{{T}_{A}}}={{\left( \frac{{{\lambda }_{A}}}{{{\lambda }_{B}}} \right)}^{2}}\]                 \[\frac{{{T}_{A}}-1.5}{{{T}_{A}}}={{\left( \frac{{{\lambda }_{A}}}{{{\lambda }_{B}}} \right)}^{2}}\]       \[[\because {{T}_{B}}={{T}_{A}}-15]\]                 \[\frac{{{T}_{A}}-1.5}{{{T}_{A}}}={{\left( \frac{{{\lambda }_{A}}}{{{\lambda }_{B}}} \right)}^{2}}\]                \[[\because {{\lambda }_{B}}=2{{\lambda }_{A}}]\]                 \[4{{T}_{A}}-6.0={{T}_{A}}\]                 Or           \[3{{T}_{A}}=6\]                 \[{{T}_{A}}=2.00\,eV\]                 \[{{W}_{A}}=4.25\,-{{T}_{A}}\]                                 \[=4.25-2=2.25\,eV\]                 From Eq. (iii)                 \[{{W}_{B}}=4.7-({{T}_{A}}-1.5)\]                 \[=4.7-2+1.5\]                 \[{{W}_{B}}=4.20\,eV\]                 Again \[{{T}_{B}}={{T}_{A}}-1.5=2-1.5=0.5\,eV\]


You need to login to perform this action.
You will be redirected in 3 sec spinner