BHU PMT BHU PMT (Screening) Solved Paper-2007

  • question_answer
    A ball rolls without slipping. The radius of gyration of the ball about an axis passing through its centre of mass is K. If radius of the ball be R, then the fraction of total energy associated with its rotational energy will be

    A)  \[\frac{{{K}^{2}}}{{{K}^{2}}+{{R}^{2}}}\]                               

    B)  \[\frac{{{R}^{2}}}{{{K}^{2}}+{{R}^{2}}}\]

    C)   \[\frac{{{K}^{2}}+{{R}^{2}}}{{{R}^{2}}}\]                              

    D)  \[\frac{{{K}^{2}}}{{{R}^{2}}}\]

    Correct Answer: A

    Solution :

                     Key Idea: In rolling without slipping, total energy of ball is the sum of its translational and rotational energy. Kinetic energy of ration is \[{{K}_{rot}}=\frac{1}{2}I{{\omega }^{2}}=\frac{1}{2}M{{K}^{2}}=\frac{{{v}^{2}}}{{{R}^{2}}}\] where K is radius of gyration. Kinetic energy of translation is                 \[{{K}_{tarns}}=\frac{1}{2}M{{v}^{2}}\] Thus, total energy                 \[E={{K}_{rot}}+{{K}_{trans}}\]                 \[=\frac{1}{2}M{{K}^{2}}\frac{{{v}^{2}}}{{{R}^{2}}}+\frac{1}{2}M{{v}^{2}}\]                 \[=\frac{1}{2}M{{v}^{2}}\left( \frac{{{K}^{2}}}{{{R}^{2}}}+1 \right)\]                 \[=\frac{1}{2}\frac{M{{v}^{2}}}{{{R}^{2}}}({{K}^{2}}+{{R}^{2}})\] Hence,      \[\frac{{{K}_{rot}}}{{{K}_{trans}}}=\frac{\frac{1}{2}M{{K}^{2}}\frac{{{v}^{2}}}{{{R}^{2}}}}{\frac{1}{2}\frac{m{{v}^{2}}}{{{R}^{2}}}({{K}^{2}}+{{R}^{2}})}\]                 \[=\frac{{{K}^{2}}}{{{K}^{2}}+{{R}^{2}}}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner