BHU PMT BHU PMT Solved Paper-2002

  • question_answer
    A gas expands adiabatically from a temperature \[h\] to a temperature \[d\] The work done in this process is:                [BHU PMT-2002]

    A)                  \[mg\left( 1+\frac{h}{d} \right)\]                            

    B)                  \[mg{{\left( 1+\frac{h}{d} \right)}^{2}}\]

    C)                  \[mg\left( 1-\frac{h}{d} \right)\]                             

    D)                  \[mg\]

    Correct Answer: B

    Solution :

                     When 1 mole of ideal gas is expanded adiabatically from an initial volume \[W=\frac{1}{\gamma -1}\left[ \frac{{{P}_{i}}{{V}_{i}}}{V_{i}^{\gamma -1}}-\frac{{{p}_{f}}{{V}_{f}}}{V_{f}^{\gamma -1}} \right]\] to final volume \[=\frac{1}{\gamma -1}\left[ {{P}_{i}}{{V}_{i}}-{{P}_{f}}{{V}_{f}} \right]\], then the external work done by the gas is \[{{T}_{i}}\]                 Where \[{{T}_{f}}\] is instantaneous pressure of the gas during infinitesimal expansion\[{{P}_{i}}{{V}_{i}}=R\,\,{{T}_{i}}\,\,and\,\,{{P}_{f}}{{V}_{f}}=R\,\,T\].                 In adiabatic expansion                                                 \[\therefore \]                 \[W=\frac{R}{\gamma -1}\left( {{T}_{i}}-{{T}_{f}} \right)\]                             \[{{C}_{P}}-{{C}_{V}}=R\]                                 \[\gamma =\frac{{{C}_{P}}}{{{C}_{V}}}\]                                 \[\therefore \]                 Where, \[W=\frac{{{C}_{p}}-{{C}_{V}}}{\frac{{{C}_{P}}-{{C}_{V}}}{{{C}_{V}}}}\left( {{T}_{i}}-{{T}_{f}} \right)={{C}_{V}}\left( {{T}_{i}}-{{T}_{f}} \right)\]                                              \[{{T}_{i}}\]         \[{{T}_{1}}\]                 If \[{{T}_{f}}\] and \[{{T}_{2}}\] be absolute temperatures of the gas, then                 \[\therefore \]                 \[W={{C}_{V}}\left( {{T}_{1}}-{{T}_{2}} \right)\]                 \[F\left( x \right)=-\frac{dU}{dx}\]                 From Mayor?s formula \[U=A-B{{x}^{2}}\] and                                                 \[\therefore \]                 \[\frac{dU}{dx}=-2Bx\]  \[\therefore \]                 Given, \[F\left( x \right)=-2Bx\]=\[\Rightarrow \] and \[F\left( x \right)\propto x\]=\[x\]                                                 \[\therefore \]\[mg\left( h+d \right)=F\times d\]                 Note: Work done depends only one the initial and final temperature of the gas


You need to login to perform this action.
You will be redirected in 3 sec spinner