CEE Kerala Engineering CEE Kerala Engineering Solved Paper-2001

  • question_answer
    If\[\int_{0}^{1}{\frac{{{e}^{-x}}dx}{1+{{e}^{x}}}}={{\log }_{e}}(1+e)+k,\]then k is equal to:

    A)  \[{{e}^{-1}}+\log 2\]     

    B)         \[-(e+\log 2)\]

    C)  \[-\left( \frac{1}{e}+\log 2 \right)\]

    D)         \[-({{e}^{-1}}+\log 3)\]

    E)  \[-(e+\log 3)\]

    Correct Answer: C

    Solution :

    Let \[I=\int_{0}^{1}{\frac{{{e}^{-x}}dx}{1+{{e}^{x}}}}\] \[=\int_{0}^{1}{\frac{1}{{{e}^{x}}(1+{{e}^{x}})}}dx\] Let   \[{{e}^{x}}=t\]                                 \[{{e}^{x}}dx=dt\] \[\therefore \]  \[I=\int_{1}^{e}{\frac{1}{{{t}^{2}}(1+t)}}dt\]                 \[=\int_{1}^{e}{\left( -\frac{t-1}{{{t}^{2}}}+\frac{1}{1+t} \right)}dt\]                 \[=\int_{1}^{e}{\left( \frac{1}{t+1}-\frac{1}{t}+\frac{1}{{{t}^{2}}} \right)}dt\]                 \[=\left[ \log (t+1)-\log t-\frac{1}{t} \right]_{1}^{e}\] \[=\log (1+e)-1-\frac{1}{e}-\log 2+1\] \[\therefore \]\[\int_{0}^{1}{\frac{{{e}^{-x}}}{1+{{e}^{x}}}}dx=\log (1+e)-\frac{1}{e}-\log 2\] But \[\int_{0}^{1}{\frac{{{e}^{-x}}dx}{1+{{e}^{x}}}}=\log (1+e)+k\] \[\therefore \]  \[k=-\left( \frac{1}{e}+\log 2 \right)\]    


You need to login to perform this action.
You will be redirected in 3 sec spinner