CEE Kerala Engineering CEE Kerala Engineering Solved Paper-2004

  • question_answer
    \[\int_{0}^{1}{\frac{x\,dx}{[x+\sqrt{1-{{x}^{2}}}\sqrt{1-{{x}^{2}}}]}}\]is equal to:

    A)  \[0\]                                    

    B)  \[1\]

    C)  \[\frac{\pi }{4}\]                             

    D)         \[\frac{{{\pi }^{2}}}{2}\]

    E)  \[\frac{\pi }{2}\]             

    Correct Answer: C

    Solution :

    Let\[I=\int_{0}^{1}{\frac{x\,dx}{[x+\sqrt{1-{{x}^{2}}}]\sqrt{1-{{x}^{2}}}}}\] Put \[x=\sin \theta \Rightarrow dx=\cos \theta \,d\theta \] \[\therefore \]  \[I=\int_{0}^{\pi /2}{\frac{\sin \theta .\cos \theta d\theta }{(\sin \theta +\cos \theta ).\cos \theta }}\] \[\Rightarrow \]\[I=\int_{0}^{\pi /2}{\frac{\sin \theta }{\sin \theta +\cos \theta }}d\theta \]       ?. (i) \[\Rightarrow \]\[I=\int_{0}^{\pi /2}{\frac{\sin (\pi /2-\theta )}{\sin (\pi /2-\theta )+\cos (\pi /2-\theta )}}d\theta \] \[\Rightarrow \]\[I=\int_{0}^{\pi /2}{\frac{\cos \theta }{\sin \theta +\cos \theta }}d\theta \]      ?. (ii) On adding Eqs (i) and (ii), we get \[2I=\int_{0}^{\pi /2}{\left( \frac{\sin \theta +\cos \theta }{\sin \theta +\cos \theta } \right)}d\theta =\int_{0}^{\pi /2}{1\,d\theta =\frac{\pi }{2}}\] \[\Rightarrow \]               \[I=\frac{\pi }{4}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner