CEE Kerala Engineering CEE Kerala Engineering Solved Paper-2004

  • question_answer
    For any positive integer\[n,\int{\frac{dx}{{{x}^{n+1}}+x}}\]is equal to:

    A)  \[\frac{1}{n}{{\log }_{e}}({{x}^{n}}+1)+c\]

    B)  \[\frac{1}{n}{{\log }_{e}}\left( \frac{1}{{{x}^{n}}+1} \right)+c\]

    C)  \[\frac{1}{n}{{\log }_{e}}\left( \frac{x}{{{x}^{n}}+1} \right)+c\]

    D)  \[\frac{1}{n+1}{{\log }_{e}}\left( \frac{{{x}^{n}}}{{{x}^{n}}+1} \right)+c\]

    E)  \[\frac{1}{n}{{\log }_{e}}\left( \frac{{{x}^{n}}}{{{x}^{n}}+1} \right)+c\]

    Correct Answer: E

    Solution :

    Let \[I=\int{\frac{dx}{x({{x}^{n}}+1)}}\] \[\Rightarrow \]               \[I=\int{\frac{{{x}^{n-1}}}{{{x}^{n}}({{x}^{n}}+1)}}dx\] Put             \[{{x}^{n}}=t\] \[\Rightarrow \]               \[n{{x}^{n-1}}dx=dt\] \[\Rightarrow \]               \[{{x}^{n-1}}dx=\frac{1}{n}dt\] \[\therefore \]  \[I=\frac{1}{n}\int{\left( \frac{1}{t}-\frac{1}{t+1} \right)}dt\]                 \[=\frac{1}{n}\log \left( \frac{t}{t+1} \right)=\frac{1}{n}\log \left( \frac{{{x}^{n}}}{{{x}^{n}}+1} \right)+c\]


You need to login to perform this action.
You will be redirected in 3 sec spinner