CEE Kerala Engineering CEE Kerala Engineering Solved Paper-2011

  • question_answer
    If the function\[f:[1,\infty )\to [1,\infty )\]is defined by \[f(x)={{2}^{x(x-1)}},\]then \[{{f}^{-1}}(x)\]is

    A)  \[{{\left( \frac{1}{2} \right)}^{x(x-1)}}\]

    B)  \[\frac{1}{2}(1-\sqrt{1+4{{\log }_{2}}x})\]

    C)  \[\frac{1}{2}\sqrt{1+4{{\log }_{2}}x}\]

    D)  \[\frac{1}{2}[1+\sqrt{1+4{{\log }_{2}}x}]\]

    E)  not defined

    Correct Answer: D

    Solution :

     \[f:[1,\infty ]\to [1,\infty )\]and \[f(x)={{2}^{x(x-1)}}\] Let         \[y={{2}^{x(x-1)}}\] \[\Rightarrow \]               \[{{\log }_{2}}y=x(x-1)\] \[\Rightarrow \]               \[{{x}^{2}}-x-{{\log }_{2}}y=0\] \[\Rightarrow \]               \[x=\frac{1\pm \sqrt{1+4{{\log }_{2}}y}}{2}={{f}^{-1}}(y)\]                                                 \[[\because x={{f}^{-1}}(y)]\] \[\Rightarrow \]               \[{{f}^{-1}}(x)=\frac{1\pm \sqrt{1+4{{\log }_{2}}x}}{2}\] Hence,  \[{{f}^{-1}}(x)=\frac{1+\sqrt{1+4{{\log }_{2}}x}}{2}\]      \[[\because x\ge 1]\]


You need to login to perform this action.
You will be redirected in 3 sec spinner