CET Karnataka Medical CET - Karnataka Medical Solved Paper-2010

  • question_answer
    Consider the following gaseous equilibria with   equilibrium  constants  \[{{K}_{1}}\] and \[{{K}_{2}}\] respectively. \[S{{O}_{2}}(g)+\frac{1}{2}{{O}_{2}}(g)S{{O}_{3}}(g)\] \[2S{{O}_{3}}(g)2S{{O}_{2}}(g)+{{O}_{2}}(g)\] The equilibrium constants are related as

    A)  \[K_{1}^{2}=\frac{1}{{{K}_{2}}}\]

    B)  \[2{{K}_{1}}=K_{2}^{2}\]

    C)  \[{{K}_{2}}=\frac{2}{K_{1}^{2}}\]

    D)  \[K_{2}^{2}=\frac{1}{{{K}_{1}}}\]

    Correct Answer: A

    Solution :

    For the reaction, \[S{{O}_{2}}(g)+\frac{1}{2}{{O}_{2}}(g)S{{O}_{3}}(g)\] Equilibrium constant,\[{{K}_{1}}=\frac{[S{{O}_{3}}]}{[S{{O}_{2}}]{{[{{O}_{2}}]}^{1/2}}}\] ?(i) For the reaction, \[2S{{O}_{3}}(g)2S{{O}_{2}}(g)+{{O}_{2}}(g)\] equilibrium constant, \[{{K}_{2}}=\frac{{{[S{{O}_{2}}]}^{2}}[{{O}_{2}}]}{{{[S{{O}_{3}}]}^{2}}}\]...(ii) On squaring both sides in Eq (i), we get          \[K_{1}^{2}=\frac{{{[S{{O}_{3}}]}^{2}}}{{{[S{{O}_{2}}]}^{2}}[{{O}_{2}}]}\]               ...(iii) Eqs. (ii) \[\times \]Eq (iii), we get \[K_{1}^{2}\times {{K}_{2}}=1\] or \[{{K}_{2}}=\frac{1}{K_{1}^{2}}\] or \[K_{1}^{2}=\frac{1}{{{K}_{2}}}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner