DUMET Medical DUMET Medical Solved Paper-2006

  • question_answer
    In a radioactive material the activity at time \[{{t}_{1}}\] is \[{{R}_{1}}\] and at a later time \[{{t}_{2}}\], it is \[{{R}_{2}}\]. If the decay constant of the material is \[\lambda ,\] then:

    A)  \[{{R}_{1}}={{R}_{2}}{{e}^{-\lambda ({{t}_{1}}-{{t}_{2}})}}\]

    B)  \[{{R}_{1}}={{R}_{2}}{{e}^{\lambda ({{t}_{1}}-{{t}_{2}})}}\]

    C)  \[{{R}_{1}}={{R}_{2}}({{t}_{2}}/{{t}_{1}})\] 

    D)  \[{{R}_{1}}={{R}_{2}}\]

    Correct Answer: A

    Solution :

     The decay rate R of radioactive substance is the number of decays per second. From radioactive decay law \[-\frac{dN}{dt}\propto N\] or \[-\frac{dN}{dt}=\lambda N\] Thus, \[R=-\frac{dN}{dt}\] or \[R\propto N\] or, \[R=\lambda N\] or \[R=\lambda {{N}_{0}}{{e}^{-\lambda t}}\] ... (i) where \[{{R}_{0}}\] is \[\lambda {{N}_{0}}\] is the activity of the radioactive substance at time t is 0. , At time \[{{t}_{1}}\], \[{{R}_{1}}={{R}_{0}}{{e}^{-\lambda {{t}_{1}}}}\] ... (ii) At time \[{{t}_{2}}\], \[{{R}_{2}}={{R}_{0}}{{e}^{-\lambda {{t}_{2}}}}\] ... (iii) Dividing Eq. (ii) by Eq. (iii), we have \[\frac{{{R}_{1}}}{{{R}_{2}}}=\frac{{{e}^{-\lambda {{t}_{1}}}}}{{{e}^{-\lambda {{t}_{2}}}}}={{e}^{-\lambda ({{t}_{1}}-{{t}_{2}})}}\] or \[{{R}_{1}}={{R}_{2}}{{e}^{-\lambda ({{t}_{1}}-{{t}_{2}})}}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner