J & K CET Engineering J and K - CET Engineering Solved Paper-2007

  • question_answer
    If \[f(x)=\frac{{{e}^{1/x}}}{1+{{e}^{1/x}}}\]for \[x\ne 0\] and \[f(0)=0,\] then at \[x=0\] the function \[f(x)\] is

    A)  continuous   

    B)  discontinuous

    C)  increasing     

    D)  differentiable

    Correct Answer: B

    Solution :

    Given,   \[f(x)=\frac{{{e}^{1/x}}}{1+{{e}^{1/x}}},\,\,f(0)=0\] \[LHL=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\underset{h\to 0}{\mathop{\lim }}\,f(0-h)\] \[=\underset{h\to 0}{\mathop{\lim }}\,\frac{{{e}^{-1/h}}}{1+{{e}^{-1/h}}}=0\] \[RHL=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\,f(x)=\underset{h\to 0}{\mathop{\lim }}\,f(0+h)\] \[=\underset{h\to 0}{\mathop{\lim }}\,\frac{{{e}^{1/h}}}{1+{{e}^{1/h}}}=1\] Since,   \[LHL\ne RHL\] So, \[f(x)\] is discontinuous at \[x=0.\]


You need to login to perform this action.
You will be redirected in 3 sec spinner