J & K CET Medical J & K - CET Medical Solved Paper-2001

  • question_answer
    A particle is subjected to acceleration\[a=\alpha t+\beta {{t}^{2}}\], where \[\alpha \] and\[\beta \] are constants. The position and velocity of the particle att = 0 are x0 and v0 respectively. The expression for position of particle at time c is :

    A) \[x(t)={{x}_{0}}+{{v}_{0}}t+\frac{1}{6}\alpha {{t}^{3}}+\frac{1}{12}\beta {{t}^{4}}\]

    B) \[x(t)={{x}_{0}}+{{v}_{0}}t+\frac{1}{6}\alpha {{t}^{2}}+\frac{1}{24}\beta {{t}^{3}}\]

    C) \[x(t)={{x}_{0}}+{{v}_{0}}t+\frac{1}{12}\alpha {{t}^{2}}+\frac{1}{6}\beta {{t}^{3}}\]

    D) \[x(t)={{x}_{0}}+{{v}_{0}}t+\frac{1}{6}\alpha {{t}^{2}}+\frac{1}{12}\beta {{t}^{3}}\]

    Correct Answer: A

    Solution :

                    Rate of change of velocity gives acceleration\[(\overrightarrow{a})\]of the particle. That is \[\overrightarrow{a}=\frac{dv}{dt}\] Given,      \[a=\alpha t+\beta {{t}^{2}}\] \[\Rightarrow \]               \[\frac{dv}{dt}=(\alpha t+\beta {{t}^{2}})\] \[\Rightarrow \]               \[dv=(\alpha t+\beta {{t}^{2}})dt\] Integrating it within the condition of motion \[\int_{{{v}_{0}}}^{v}{dv}=\int_{0}^{t}{(\alpha t+\beta {{t}^{2}})}dt\] \[\Rightarrow \]               \[v-{{v}_{0}}=\frac{1}{2}\alpha {{t}^{2}}+\frac{\beta {{t}^{2}}}{3}\] \[\Rightarrow \]               \[v={{v}_{0}}+\frac{1}{2}\alpha {{t}^{2}}+\frac{1}{3}\beta {{t}^{3}}\] \[\Rightarrow \]               \[\frac{dx}{dt}={{v}_{0}}+\frac{1}{2}\alpha {{t}^{2}}+\frac{1}{3}\beta {{t}^{3}}\] Integrating it, using\[\int{{{x}^{n}}}dx=\frac{{{x}^{n+1}}}{n+1},\]we have \[\int_{{{x}_{0}}}^{x}{dx}=\int_{0}^{t}{({{v}_{0}}+\frac{1}{2}\alpha {{t}^{2}}+\frac{1}{3}\beta {{t}^{3}})}dt\] \[\Rightarrow \]               \[x-{{x}_{0}}={{v}_{0}}t+\frac{1}{6}\alpha {{t}^{3}}+\frac{1}{12}\beta {{t}^{4}}\] \[\Rightarrow \]               \[x={{x}_{0}}+{{v}_{0}}t+\frac{1}{6}\alpha {{t}^{3}}+\frac{1}{12}\beta {{t}^{4}}\] Or           \[x(t)={{x}_{0}}+{{v}_{0}}t+\frac{1}{6}\alpha {{t}^{3}}+\frac{1}{12}\beta {{t}^{4}}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner