JAMIA MILLIA ISLAMIA Jamia Millia Islamia Solved Paper-2007

  • question_answer
        If \[\int{\frac{\sin x}{\sin (x-\alpha )}}dx=Ax+B\log \sin (x-\alpha )+c,\] then value of (A, B) is

    A)  \[(\sin \alpha ,\cos \alpha )\]    

    B)  \[(\cos \alpha ,\sin \alpha )\]

    C)  \[(-\sin \alpha ,\cos \alpha )\]  

    D)  \[(-\cos \alpha ,\sin \alpha )\]

    Correct Answer: B

    Solution :

                    Let \[I=\int{\frac{\sin x}{\sin (x-\alpha )}}dx\] Put \[x-\alpha =t\Rightarrow dx=dt\]                 \[I=\int{\frac{\sin (t+\alpha )}{\sin t}}dt\] \[I=\int{\frac{\sin t\cos \alpha +\cos t\sin \alpha }{\sin t}}dt\] \[I=\int{\cos \alpha \,dt}+\int{\sin \alpha \frac{\cos t}{\sin t}}dt\] \[I=\cos \alpha \int{1dt}+\sin \alpha \int{\frac{\cos t}{\sin t}}dt\] \[I=\cos \alpha (t)+\sin \alpha \log \sin t+{{c}_{1}}\] \[I=\cos \alpha (x-\alpha )+\sin \alpha \log \sin (x-\alpha )+{{c}_{1}}\] \[I=\cos \alpha +\sin \alpha \log \sin (x-\alpha )-\alpha \cos \alpha +{{c}_{1}}\] \[I=x\cos \alpha +\sin \alpha \log \sin (x-\alpha )+c\] But \[\int{\frac{\sin x}{\sin (x-\alpha )}}dx=Ax+B\log \sin (x-\alpha )+c\] \[\therefore \] \[x\cos \alpha +\sin \alpha \log \sin (x-\alpha )+c\]                                 \[=Ax+B\log \sin (x-\alpha )+c\] On comparing, we get \[A=cos\text{ }\alpha ,\text{ }B=sin\text{ }\alpha \] Alternate Solution \[\because \] \[\int{\frac{\sin x}{\sin (x-\alpha )}}dx=Ax+B\log \sin (x-\alpha )+c\] On differentiating both sides with respect to\[x\] we get \[\frac{\sin x}{\sin (x-\alpha )}=A+B\frac{\cos (x-\alpha )}{\sin (x-\alpha )}\] \[\Rightarrow \]               \[\sin x=A\sin (x-\alpha )+B\cos (x-\alpha )\] \[\Rightarrow \]               \[\sin x=A(\sin x\cos \alpha -\cos x\sin \alpha )\]                                 \[+B(\cos x\cos \alpha +\sin x\sin \alpha )\] \[\Rightarrow \]               \[\sin x=\sin x(A\cos \alpha +B\sin \alpha )\]                                 \[+\cos x(B\cos \alpha -A\sin \alpha )\] On comparing, we get \[A\text{ }cos\,\alpha +B\text{ }sin\,\alpha =1\]                         ...(i) and        \[B\text{ }cos\,\alpha -A\text{ }sin\,\alpha =0\]                         ... (ii) On solving Eqs. (i) and (ii), we get \[A=cos\,\alpha ,\text{ }B=sin\,\alpha \]


You need to login to perform this action.
You will be redirected in 3 sec spinner