JAMIA MILLIA ISLAMIA Jamia Millia Islamia Solved Paper-2010

  • question_answer
        The point of intersection of the tangents at two points on the ellipse\[\frac{{{x}^{2}}}{{{a}^{2}}}+\frac{{{y}^{2}}}{{{b}^{2}}}=1,\]whose eccentric angles differ by a right angle lies on the ellipse

    A)  \[\frac{{{x}^{2}}}{{{a}^{2}}}+\frac{{{y}^{2}}}{{{b}^{2}}}=2\]                         

    B)  \[\frac{{{x}^{2}}}{{{b}^{2}}}+\frac{{{y}^{2}}}{{{a}^{2}}}=1\]

    C)  \[\frac{{{x}^{2}}}{{{b}^{2}}}+\frac{{{y}^{2}}}{{{a}^{2}}}=2\]                         

    D)  \[\frac{{{x}^{2}}}{{{a}^{2}}}+\frac{{{y}^{2}}}{{{b}^{2}}}=4\]

    Correct Answer: A

    Solution :

                    Let\[P(a\cos \theta ,b\sin \theta )\]and\[Q(a\cos \phi ,b\sin \phi )\]be two points on the ellipse\[\frac{{{x}^{2}}}{{{a}^{2}}}+\frac{{{y}^{2}}}{{{b}^{2}}}=1\]such that \[\theta -\phi =\frac{\pi }{2}\] Now, the equations of tangents and P and Q are respectively \[\frac{x}{a}\cos \theta +\frac{y}{b}\sin \theta =1\]                  ...(i) \[\frac{x}{a}\cos \phi +\frac{y}{b}\sin \phi =1\]                ... (ii) Since,\[\theta =\frac{\pi }{2}+\phi \]so Eq. (i) reduces to \[-\frac{x}{a}\sin \phi +\frac{y}{b}\cos \phi =1\]                          ...(iii) Squaring and adding Eqs. (ii) and (iii), we get                 \[\frac{{{x}^{2}}}{{{a}^{2}}}+\frac{{{y}^{2}}}{{{b}^{2}}}=2\] Hence, the points of intersection of tangents at P and Q lie on the ellipse                 \[\frac{{{x}^{2}}}{{{a}^{2}}}+\frac{{{y}^{2}}}{{{b}^{2}}}=2\]


You need to login to perform this action.
You will be redirected in 3 sec spinner