JAMIA MILLIA ISLAMIA Jamia Millia Islamia Solved Paper-2010

  • question_answer
        If\[f(x)=\left\{ \begin{matrix}    \frac{|x-4|}{x-4}, & x\ne 4  \\    0, & x=4  \\ \end{matrix} \right.\]then\[\underset{x\to 4}{\mathop{\lim }}\,f(x)\]is equal to

    A)  1                                            

    B) \[-1\]

    C)  0                                            

    D)  does not exist

    Correct Answer: D

    Solution :

                    We have \[f(x)=\left\{ \begin{matrix}    \frac{|x-4|}{x-4}, & x\ne 4  \\    0, & x=4  \\ \end{matrix} \right.\] Now, RHL                 \[\underset{x\to {{4}^{+}}}{\mathop{\lim }}\,f(x)=\underset{h\to 0}{\mathop{\lim }}\,f(4+h)\]                 \[=\underset{h\to 0}{\mathop{\lim }}\,\frac{|4+h-4|}{4+h-4}=\underset{h\to 0}{\mathop{\lim }}\,\frac{|h|}{h}\]                 \[=\underset{h\to 0}{\mathop{\lim }}\,1=1\] and LHL \[\underset{x\to {{4}^{-}}}{\mathop{\lim }}\,f(x)=\underset{h\to 0}{\mathop{\lim }}\,f(4-h)\]                 \[=\underset{h\to 0}{\mathop{\lim }}\,\frac{|4-h+4|}{4-h+4}\]                 \[=\underset{h\to 0}{\mathop{\lim }}\,\frac{|-h|}{-h}=\underset{h\to 0}{\mathop{\lim }}\,(-1)=-1\] Since,    \[LHL\ne RHL\] ie,           \[\underset{x\to {{4}^{-1}}}{\mathop{\lim }}\,f(x)\ne \underset{x\to {{4}^{+}}}{\mathop{\lim }}\,f(x)\] Thus, limit does not exist.


You need to login to perform this action.
You will be redirected in 3 sec spinner