JAMIA MILLIA ISLAMIA Jamia Millia Islamia Solved Paper-2012

  • question_answer
        If the roots of the equation\[\frac{{{x}^{2}}-bx}{ax-c}=\frac{m-1}{m+1}\]are equal and of opposite sign, then the value of m will be

    A)  \[\frac{a-b}{a+b}\]                        

    B)  \[\frac{b-a}{a+b}\]

    C)  \[\frac{a+b}{a-b}\]                        

    D)  \[\frac{b+a}{b-a}\]

    Correct Answer: A

    Solution :

                    Let d be the common difference of the given AP then, \[{{a}_{2}}-{{a}_{1}}={{a}_{3}}-{{a}_{2}}={{a}_{4}}-{{a}_{3}}\]                                 \[=...={{a}_{n}}-{{a}_{n-1}}=d\] ?(i) Now, \[\frac{1}{\sqrt{{{a}_{1}}}+\sqrt{{{a}_{2}}}}+\frac{1}{\sqrt{{{a}_{2}}}+\sqrt{{{a}_{3}}}}+\frac{1}{\sqrt{{{a}_{3}}}+\sqrt{{{a}_{4}}}}\]                                 \[+....+\frac{1}{\sqrt{{{a}_{n-1}}}+\sqrt{{{a}_{n}}}}\]       ?(ii) On multiplying by the rationalisation factor of every term in numerator and denominator, we get \[\frac{\sqrt{{{a}_{2}}}-\sqrt{{{a}_{1}}}}{{{a}_{2}}-{{a}_{1}}}+\frac{\sqrt{{{a}_{3}}}-\sqrt{{{a}_{2}}}}{{{a}_{3}}-{{a}_{2}}}+\frac{\sqrt{{{a}_{4}}}-\sqrt{{{a}_{3}}}}{{{a}_{4}}-{{a}_{3}}}\]                                 \[+....+\frac{\sqrt{{{a}_{n}}}-\sqrt{{{a}_{n-1}}}}{{{a}_{n}}-{{a}_{n-1}}}\] [using Eq.(i)] \[=\frac{1}{d}[\sqrt{{{a}_{2}}}-\sqrt{{{a}_{1}}}+\sqrt{{{a}_{3}}}-\sqrt{{{a}_{2}}}+\sqrt{{{a}_{4}}}-\sqrt{{{a}_{3}}}\]                                                 \[+...+\sqrt{{{a}_{n}}}-\sqrt{{{a}_{n-1}}}]\] \[=\frac{1}{d}(\sqrt{{{a}_{n}}}-\sqrt{{{a}_{1}}})\] \[=\frac{1}{d}(\sqrt{{{a}_{n}}}-\sqrt{{{a}_{1}}}).\frac{\sqrt{{{a}_{n}}}+\sqrt{{{a}_{1}}}}{\sqrt{{{a}_{n}}}+\sqrt{{{a}_{1}}}}\] \[=\frac{{{a}_{n}}-{{a}_{1}}}{d(\sqrt{{{a}_{n}}}+\sqrt{{{a}_{1}}})}\] \[=\frac{n-1}{d(\sqrt{{{a}_{n}}}+\sqrt{{{a}_{1}}})}\]         \[[\because {{a}_{n}}={{a}_{1}}+(n-1)d]\] \[=\frac{n-1}{\sqrt{{{a}_{n}}}+\sqrt{{{a}_{1}}}}\] \[=\frac{n-1}{\sqrt{{{a}_{1}}}+\sqrt{{{a}_{n}}}}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner