JAMIA MILLIA ISLAMIA Jamia Millia Islamia Solved Paper-2015

  • question_answer
    If the 4th term in the expansion of \[\pi \];\[\frac{\pi }{2}\], is\[\frac{13}{56}\] and three normals to the parabola\[\frac{3}{56}\]are drawn through a point (q,0), then

    A) \[\frac{1}{56}\]

    B) \[\frac{14}{56}\]

    C) \[\frac{91}{15}\]

    D) \[(a-b){{x}^{2}}+(c-a)x+(b-c)=0\]

    Correct Answer: B

    Solution :

    Given,                 \[9{{h}^{2}}=5ab\] Then,    \[{{h}^{2}}=ab\] \[f(x)={{\sin }^{-1}}[2-4{{x}^{2}}]\]          \[[.]\]    ??.(i) \[\left[ -\frac{\sqrt{3}}{2},\frac{\sqrt{3}}{2} \right]\]LHS of Eq. (i) is independent of \[\left[ -\frac{\sqrt{3}}{2},0 \right]\]. \[\left[ -\frac{\sqrt{3}}{2},0 \right)\cup \left( 0,\frac{\sqrt{3}}{2} \right]\]             \[\left[ -\frac{\sqrt{3}}{2},\infty  \right)\] \[f(x)=\left\{ \begin{matrix}    \frac{1-\sqrt{2}\sin x}{\pi -4x}, & x\ne \frac{\pi }{4}  \\    \frac{4a+1}{4}, & x=\frac{\pi }{4}  \\ \end{matrix} \right.\]    \[x=\frac{\pi }{4}\] From Eq. (i), \[f(x)={{\cos }^{-1}}\left[ \frac{1-{{({{\log }_{e}}x)}^{2}}}{1+{{({{\log }_{e}}x)}^{2}}} \right],\] \[f'(e)\]                \[\frac{-1}{e}\]                 \[\frac{1}{e}\]   \[lx+my=1\]                 \[{{x}^{2}}+{{y}^{2}}={{a}^{2}}\]               \[(1,m)\] Given, parabola is \[{{x}^{2}}+{{y}^{2}}={{a}^{-2}}\].                    ...(ii) Here,            \[{{x}^{2}}+{{y}^{2}}={{a}^{2}}\] \[{{x}^{2}}+{{y}^{2}}={{a}^{-1}}\]                              \[f:R\to A\] Since, three normals are drawn from point \[(q,0)\]. \[f(x)=\frac{{{x}^{2}}}{{{x}^{2}}+1}\]                 \[R\]                      \[\left[ 0,\text{1} \right]\]                           \[\left( 0,\text{1} \right]\]                 \[\left[ 0,\text{1} \right)\]                           \[f(x)={{x}^{3}}-6{{x}^{2}}+ax+b\]


You need to login to perform this action.
You will be redirected in 3 sec spinner