JCECE Engineering JCECE Engineering Solved Paper-2008

  • question_answer
    In a \[\Delta ABC\], right angled at \[C\], the value of \[\cot A+\cot B\]is

    A) \[\frac{{{c}^{2}}}{ab}\]                                 

    B) \[a+b\]

    C) \[\frac{{{a}^{2}}}{bc}\]                                 

    D) \[\frac{{{b}^{2}}}{ac}\]

    Correct Answer: A

    Solution :

    \[\cot A+\cot B\]                 \[=\frac{\cos A}{\sin A}+\frac{\cos B}{\sin B}\]                 \[=\frac{\cos A\sin B+\cos B\sin A}{\sin A\sin B}\]                 \[=\frac{\sin (A+B)}{\sin A\sin B}\]                 \[=\frac{\sin (\pi -C)}{\sin A\sin B}\]              \[(\because \,\,A+B+C=\pi )\]                 \[=\frac{\sin C}{\sin A\sin B}\]                 \[=\frac{1}{\sin A\sin B}\]            \[(\because \,\,C={{90}^{o}})\] ? (i) Applying sine rule,                 \[\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}\] \[\Rightarrow \]               \[\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{1}{c}\]          \[(\because \,\,\sin {{90}^{o}}=1)\] \[\Rightarrow \]               \[\sin A=\frac{a}{c},\,\,\sin B=\frac{b}{c}\] From Eq. (i),                 \[\cot A+\cot B=\frac{1}{\frac{a}{c}\cdot \frac{b}{c}}\]                                         \[=\frac{{{c}^{2}}}{ab}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner