JCECE Engineering JCECE Engineering Solved Paper-2010

  • question_answer
    The equation of ellipse whose axes are coincident with the coordinate axes and which   touches   the   straight   lines \[3x-2y-20=0\] and\[x+6y-20=0\], is

    A) \[\frac{{{x}^{2}}}{5}+\frac{{{y}^{2}}}{8}=1\]                        

    B) \[\frac{{{x}^{2}}}{40}+\frac{{{y}^{2}}}{10}=10\]

    C) \[\frac{{{x}^{2}}}{40}+\frac{{{y}^{2}}}{10}=1\]                   

    D) \[\frac{{{x}^{2}}}{10}+\frac{{{y}^{2}}}{40}=1\]

    Correct Answer: C

    Solution :

    Let the equation of ellipse be                 \[\frac{{{x}^{2}}}{{{a}^{2}}}+\frac{{{y}^{2}}}{{{b}^{2}}}=1\]                                           ? (i) We know that, the line\[y=mx+c\]is a tangent to the ellipse\[\frac{{{x}^{2}}}{{{a}^{2}}}+\frac{{{y}^{2}}}{{{b}^{2}}}=1\], if\[{{c}^{2}}={{a}^{2}}{{m}^{2}}+{{b}^{2}}\] It is given that the line\[3x-2y-20=0\] \[ie,\]\[y=\frac{3}{2}x-10\]is a tangent to the ellipse \[(i)\] \[\therefore \]  \[{{(-10)}^{2}}={{a}^{2}}{{\left( \frac{3}{2} \right)}^{2}}+{{b}^{2}}\] \[\Rightarrow \]               \[\frac{9}{4}{{a}^{2}}+{{b}^{2}}=100\] \[\Rightarrow \]               \[9{{a}^{2}}+4{{b}^{2}}=400\]                     ... (ii) Similarly,\[x+6y-20=0\] \[ie,\]\[y=-\frac{1}{6}x+\frac{10}{3}\]is also a tangent to the ellipse (i) \[\therefore \]  \[{{\left( \frac{10}{3} \right)}^{2}}={{a}^{2}}{{\left( -\frac{1}{6} \right)}^{2}}+{{b}^{2}}\] \[\Rightarrow \]               \[\frac{1}{36}{{a}^{2}}+{{b}^{2}}=\frac{100}{9}\] \[\Rightarrow \]               \[{{a}^{2}}+36{{b}^{2}}=400\]                     ... (iii) On solving Eq. (ii) and (iii), we get                 \[{{a}^{2}}=40,\,\,{{b}^{2}}=10\] Putting these values in Eq. (i), we get the required equation of ellipse                 \[\frac{{{x}^{2}}}{40}+\frac{{{y}^{2}}}{10}=1\]


You need to login to perform this action.
You will be redirected in 3 sec spinner