JEE Main & Advanced JEE Main Paper (Held on 08-4-2019 Morning)

  • question_answer
    If\[2y={{\left( {{\cot }^{-1}}\left( \frac{\sqrt{3}\cos x+\sin x}{\cos x-\sqrt{3}\sin x} \right) \right)}^{2}},x\in \left( 0,\frac{\pi }{2} \right),\] then\[\frac{dy}{dx}\]is equal to :             [JEE Main 8-4-2019 Morning]

    A) \[2x-\frac{\pi }{3}\]                

    B) \[\frac{\pi }{3}-x\]

    C) \[\frac{\pi }{6}-x\]                  

    D) \[x-\frac{\pi }{6}\]

    Correct Answer: D

    Solution :

    Consider \[{{\cot }^{-1}}\left( \frac{\frac{\sqrt{3}}{2}\cos x+\frac{1}{2}\sin x}{\frac{1}{2}\sin x-\frac{\sqrt{3}}{2}\sin x} \right)\]             \[={{\cot }^{-1}}\left( \frac{\sin \left( x+\frac{\pi }{3} \right)}{\cos \left( x+\frac{\pi }{3} \right)} \right)\]             \[={{\cot }^{-1}}\left( \tan \left( x+\frac{\pi }{3} \right) \right)=\frac{\pi }{2}-{{\tan }^{-1}}\left( \tan \left( x+\frac{\pi }{3} \right) \right)\]             \[\left\{ \begin{align}   & \left\{ \frac{\pi }{2}-\left( x+\frac{\pi }{3} \right) \right.=\left( \frac{\pi }{6}-x \right);0<x<\frac{\pi }{6} \\  & \frac{\pi }{2}-\left( \left( x-\frac{\pi }{3} \right)-\pi  \right)=\left( \frac{7\pi }{6}-x \right);\frac{\pi }{6}<x<\frac{\pi }{2} \\ \end{align} \right.\] \[\therefore \]\[2y=\left\{ \begin{align}   & {{\left( \frac{\pi }{6}-x \right)}^{2}};0<x<\frac{\pi }{6} \\  & {{\left( \frac{7\pi }{6}-x \right)}^{2}};\frac{\pi }{6}<x<\frac{\pi }{2} \\ \end{align} \right.\] \[\therefore \]\[2\frac{dy}{dx}=\left\{ \begin{align}   & 2\left( \frac{\pi }{6}-x \right).(-1);0<x<\frac{\pi }{6} \\  & 2\left( \frac{7\pi }{6}-x \right).(-1);\frac{\pi }{6}<x<\frac{\pi }{2} \\ \end{align} \right.\]


You need to login to perform this action.
You will be redirected in 3 sec spinner