JEE Main & Advanced JEE Main Paper (Held on 10-4-2019 Afternoon)

  • question_answer
    Let \[y=y\left( x \right)\] be the solution of the differential equation, \[\frac{dy}{dx}+y\tan x=2x+{{x}^{2}}\tan x,\] \[x\in \left( -\frac{\pi }{2},\frac{\pi }{2} \right),\]such that \[y(0)=1.\]Then : [JEE Main 10-4-2019 Afternoon]

    A) \[y'\left( \frac{\pi }{4} \right)+y'\left( \frac{-\pi }{4} \right)=-\sqrt{2}\]

    B) \[y'\left( \frac{\pi }{4} \right)-y'\left( \frac{-\pi }{4} \right)=\pi -\sqrt{2}\]

    C) \[y\left( \frac{\pi }{4} \right)-y\left( -\frac{\pi }{4} \right)=\sqrt{2}\]

    D) \[y\left( \frac{\pi }{4} \right)+y\left( -\frac{\pi }{4} \right)=\frac{{{\pi }^{2}}}{2}+2\]

    Correct Answer: B

    Solution :

    \[\frac{dy}{dx}+y(tan\,x)=2x+{{x}^{2}}\tan x\]           \[I.F={{e}^{\int_{{}}^{{}}{\tan xdx}}}={{e}^{\ln .\sec x}}=\sec x\]           \[\therefore \]\[y.\sec x=\int_{{}}^{{}}{\left( 2x+{{x}^{2}}\tan x \right)}\sec x.dx\]           \[=\int_{{}}^{{}}{2x\sec xdx}+\int_{{}}^{{}}{{{x}^{2}}}\left( \sec x.\tan x \right)dx\]           \[y\sec x={{x}^{2}}\sec x+\lambda \]           \[\Rightarrow y={{x}^{2}}+\lambda \cos x\]           \[y(0)=0+\lambda =1\] \[\Rightarrow \lambda =1\]           \[y={{x}^{2}}+\cos x\]           \[y\left( \frac{\pi }{4} \right)=\frac{{{\pi }^{2}}}{16}+\frac{1}{\sqrt{2}}\]           \[y\left( -\frac{\pi }{4} \right)=\frac{{{\pi }^{2}}}{16}+\frac{1}{\sqrt{2}}\] \[y'(x)=2x-sinx\]           \[y'\left( \frac{\pi }{4} \right)=\frac{\pi }{2}-\frac{1}{\sqrt{2}}\]           \[y'\left( \frac{-\pi }{4} \right)=\frac{-\pi }{2}+\frac{1}{\sqrt{2}}\]           \[y'\left( \frac{\pi }{4} \right)-y'\left( \frac{-\pi }{4} \right)=\pi -\sqrt{2}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner