JEE Main & Advanced JEE Main Paper (Held On 11-Jan-2019 Evening)

  • question_answer
    Let \[\alpha \]and \[\beta \]be the roots of the quadratic equation \[{{x}^{2}}\sin \theta -x(sin\theta cos\theta +1)\]\[+(cos\theta =0({{0}^{o}}<\theta <{{45}^{o}})\]and \[\alpha <\beta .\]Then \[\sum\limits_{n=0}^{\infty }{\left( {{\alpha }^{n}}\frac{{{(-1)}^{n}}}{{{\beta }^{n}}} \right)}\]is equal to [JEE  Main Online Paper (Held on 11-jan-2019 Evening)]

    A) \[\frac{1}{1-\cos \theta }+\frac{1}{1+\sin \theta }\]                     

    B) \[\frac{1}{1+\cos \theta }-\frac{1}{1-\sin \theta }\]

    C) \[\frac{1}{1+\cos \theta }+\frac{1}{1-\sin \theta }\]

    D)               \[\frac{1}{1-\cos \theta }-\frac{1}{1+\sin \theta }\]

    Correct Answer: A

    Solution :

    Given, \[{{x}^{2}}\sin \theta -x(sin\theta cos\theta +1)+cos\theta =0\] \[D={{(1+sin\theta cos\theta )}^{2}}-4\sin \theta \cos \theta \]\[={{(1-sin\theta cos\theta )}^{2}}\] \[\therefore \]\[x=\frac{1+\sin \theta \cos \theta \pm (1-sin\theta cos\theta )}{2\sin \theta }\] \[\Rightarrow \]\[\alpha =\cos \theta \]and\[\beta =\operatorname{cosec}\theta \] Now,\[\sum\limits_{n=0}^{\infty }{\left( {{\alpha }^{n}}+{{\left( -\frac{1}{\beta } \right)}^{n}} \right)}=\sum\limits_{n=0}^{\infty }{{{(\cos \theta )}^{n}}}+\sum\limits_{n=0}^{\infty }{{{(-sin\theta )}^{n}}}\] \[=\frac{1}{1-\cos \theta }+\frac{1}{1+\sin \theta }\]


You need to login to perform this action.
You will be redirected in 3 sec spinner