JEE Main & Advanced Physics Electrostatics & Capacitance JEE PYQ-Electrostatics and Capacitance

  • question_answer
    A uniformly charged solid sphere of radius R has potential \[{{V}_{0}}\](measured with respect to\[\infty \]) on its surface. For this sphere the equipotential surfaces with potentials \[\frac{3{{V}_{0}}}{2},\frac{5{{V}_{0}}}{4},\frac{3{{V}_{0}}}{4}\]and \[\frac{{{V}_{0}}}{4}\]have radius \[{{R}_{1}},{{R}_{2}},{{R}_{3}}\] and\[{{R}_{4}}\] respectively. Then [JEE MAIN 2015]

    A) \[{{R}_{1}}=0\]and\[{{R}_{2}}<\left( {{R}_{4}}-{{R}_{3}} \right)\]

    B) \[2R<{{R}_{4}}\]

    C) \[{{R}_{1}}=0\]and\[{{R}_{2}}>\left( {{R}_{4}}-{{R}_{3}} \right)\]

    D) \[{{R}_{1}}\ne 0\]and\[\left( {{R}_{2}}-{{R}_{1}} \right)>\left( {{R}_{4}}-{{R}_{3}} \right)\]

    Correct Answer: A

    Solution :

    [a] Assuming sphere carries positive charge,
    Potential on the surface is\[{{V}_{0}}=\frac{KQ}{R}\]
    Potential expression inside the sphere is \[{{V}_{inside}}=\frac{KQ}{2{{R}^{3}}}\left( 3{{R}^{2}}-{{r}^{2}} \right)\]
    Potential at the centre is
    \[{{V}_{centre}}=\frac{3KQ}{2{{R}^{3}}}\left( \because r=0 \right)=\frac{3{{V}_{0}}}{2}\]
    So radius of equi-potential at the centre of sphere is zero. \[{{R}_{1}}=0\]
    Let radius of 2nd equi - potential surface is \[{{R}_{2}}\] then
               \[\frac{5{{V}_{0}}}{4}=\frac{KQ}{2{{R}^{3}}}\left( 3{{R}^{2}}-R_{2}^{2} \right)\]\[\frac{5{{V}_{0}}}{182}=\frac{{{V}_{0}}}{2{{R}^{3}}}\left( 3{{R}^{2}}-R_{2}^{2} \right)\]
    \[5{{R}^{2}}=6{{R}^{2}}-2R_{2}^{2}\]\[2R_{2}^{2}={{R}^{2}}\Rightarrow {{R}_{2}}=\frac{R}{\sqrt{2}}\]
    Let radius of 3rd equi-potential is \[{{R}_{3}}\]then
    \[\frac{3{{V}_{0}}}{4}=\frac{KQ}{{{R}_{3}}}\]
    \[\frac{3KQ}{4R}=\frac{KQ}{{{R}_{3}}}\Rightarrow {{R}_{3}}=\frac{4R}{3}\]
    Let radius of 4th equi-potential is\[{{R}_{4}}\] then
    \[\frac{{{V}_{0}}}{4}=\frac{KQ}{{{R}_{4}}}\]
    \[\frac{KQ}{4R}=\frac{KQ}{{{R}_{4}}}\Rightarrow {{R}_{4}}=4R\]
    \[{{R}_{4}}-{{R}_{3}}=4R-\frac{4R}{3}=\frac{8R}{3}=2.66R\]
    \[{{R}_{2}}=\frac{R}{1.414}<R\] so, \[{{R}_{2}}<{{R}_{4}}-{{R}_{3}}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner