Manipal Engineering Manipal Engineering Solved Paper-2008

  • question_answer
    If\[\int{f\left( x \right)}\sin x\cos x\,\,dx\] \[=\frac{1}{2({{b}^{2}}-{{a}^{2}})}\log [f(x)]+c,\] then\[f\left( x \right)\]is equal to

    A) \[\frac{1}{{{a}^{2}}{{\sin }^{2}}x+{{b}^{2}}{{\cos }^{2}}x}\]

    B) \[\frac{1}{{{a}^{2}}{{\sin }^{2}}x-{{b}^{2}}{{\cos }^{2}}x}\]

    C)  \[\frac{1}{{{a}^{2}}{{\cos }^{2}}x-{{b}^{2}}{{\sin }^{2}}x}\]

    D)  \[\frac{1}{{{a}^{2}}{{\cos }^{2}}x+{{b}^{2}}{{\sin }^{2}}x}\]

    Correct Answer: A

    Solution :

    Given,                 \[\int{f(x)}\sin x\cos xdx=\frac{1}{2({{b}^{2}}-{{a}^{2}})}\]                                                                 \[\log [f(x)]+c\] On differentiating both sides, we get                 \[f(x)\sin x\cos x=\frac{d}{dx}\left( \frac{\log [f(x)]}{2({{b}^{2}}-{{a}^{2}})}+c \right)\] \[\Rightarrow \]   \[f(x)\sin x\cos x=\frac{1}{2({{b}^{2}}-{{a}^{2}})}\cdot \frac{1}{f(x)}f(x)\] \[\Rightarrow \]\[2({{b}^{2}}-{{a}^{2}})\sin x\cos x=\frac{f(x)}{{{[f(x)]}^{2}}}\] On integrating both sides, we get                 \[\int{(2{{b}^{2}}\sin x\cos x}-2{{a}^{2}}\sin x\cos x)dx\]                                                 \[=\int{\frac{f(x)}{{{[f(x)]}^{2}}}dx}\] \[\Rightarrow \,\,-{{b}^{2}}{{\cos }^{2}}x-{{a}^{2}}{{\sin }^{2}}x=-\frac{1}{f(x)}\] \[\therefore \,\,\,f(x)=\frac{1}{{{a}^{2}}{{\sin }^{2}}x+{{b}^{2}}{{\cos }^{2}}x}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner