Manipal Medical Manipal Medical Solved Paper-2015

  • question_answer
    A particle is projected with velocity \[{{v}_{0}}\]along axis. The deceleration on the particle is proportional to the square of the distance from the origin, i.e. \[\alpha =\alpha {{x}^{2}}\], the distance at which the particle stop is

    A) \[\frac{\sqrt{3}\,{{v}_{0}}}{2\,\alpha }\]                   

    B) \[{{\left( \frac{3\,{{v}_{0}}}{2\alpha } \right)}^{1/3}}\]

    C)  \[\sqrt{\frac{2\,{{v}_{0}}}{3\,\alpha }}\]                  

    D) \[{{\left( \frac{3\,{{v}_{0}}^{2}}{2\alpha } \right)}^{1/3}}\]

    Correct Answer: D

    Solution :

    Given, initial velocity \[={{V}_{0}}\] Final velocity =0 Deceleration, a = \[-\alpha {{x}^{2}}\]                               ...(i) Let the distance travelled by the particle be s. Now, we know that \[a=\frac{dv}{dt}=\frac{dv}{dt}\times \frac{dt}{dx}=\frac{vdv}{dx}\] Or               \[a=v=\frac{dv}{dx}\] From Eq. (i) and (ii), we get \[v=\frac{dv}{dx}=-\alpha {{x}^{2}}\] Or                    \[vdx=-\alpha {{x}^{2}}dx\] On integrating with limit \[{{v}_{0}}\to 0\] and \[0\to s\] \[\int _{{{v}_{0}}}^{0}vdv=\int _{0}^{s}-\alpha {{x}^{2}}dx\] Or                 \[{{\left( \frac{{{v}^{2}}}{2} \right)}^{0}}n=-\alpha {{\left( \frac{{{x}^{3}}}{3} \right)}^{s}}\]                                  \[\frac{-v_{0}^{2}}{2}=\frac{\alpha {{(s)}^{3}}}{3}\]                                \[\frac{v_{0}^{2}}{2}=\frac{\alpha {{s}^{3}}}{3}\]                              \[\frac{3v_{0}^{2}}{2\alpha }={{s}^{3}}\] \[s={{\left( \frac{3v_{0}^{2}}{2\alpha } \right)}^{1/3}}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner