Solved papers for NEET Physics Vectors NEET PYQ-Vectors

done NEET PYQ-Vectors Total Questions - 13

  • question_answer1) If a unit vector is represented by \[0.5\hat{i}+0.8\hat{j}+c\hat{k}\] the value of c is:                      [AIPMT 1999]

    A)
    1

    B)
    \[\sqrt{0.11}\]

    C)
    \[\sqrt{0.01}\]

    D)
    0.39     

    View Answer play_arrow
  • question_answer2) If \[\vec{A}\] and \[\vec{B}\] are two vectors such that\[|\vec{A}+\vec{B}|\,=\,|\vec{A}-\vec{B}|,\] the angle between vectors \[\vec{A}\] and \[\vec{B}\] is: [AIPMT 2001]

    A)
    \[{{0}^{o}}\]

    B)
    \[{{60}^{o}}\]

    C)
    \[{{90}^{o}}\]

    D)
    \[{{120}^{o}}\]

    View Answer play_arrow
  • question_answer3) The vector sum of two forces is perpendicular to their vector differences. In that case, the forces: [AIPMT 2003]

    A)
    are not equal to each other in magnitude

    B)
    cannot be predicted

    C)
    are equal to each other

    D)
    are equal to each other in magnitude

    View Answer play_arrow
  • question_answer4) If \[|\overset{\to }{\mathop{A}}\,\,\,\,\times \overset{\to }{\mathop{B}}\,|\,=\sqrt{3}\overset{\to }{\mathop{A\,}}\,.\overset{\to }{\mathop{B\,}}\,,\] then the value of \[\left| \text{A}+\text{B} \right|\] is:                                [AIPMT (S) 2004]

    A)
    \[{{({{A}^{2}}+{{B}^{2}}+AB)}^{1/2}}\]

    B)
                \[{{\left( {{A}^{2}}+{{B}^{2}}+\frac{AB}{\sqrt{3}} \right)}^{1/2}}\]

    C)
    \[A+B\]

    D)
    \[{{({{A}^{2}}+{{B}^{2}}+\sqrt{3}AB)}^{1/2}}\]

    View Answer play_arrow
  • question_answer5) If a vector \[2\hat{i}+3\hat{j}+8\hat{k}\] is perpendicular to the vector \[4\hat{j}-4\hat{i}+\alpha \hat{k},\] then the value of a is: [AIPMT (S) 2005]

    A)
    -1

    B)
    \[\frac{1}{2}\]

    C)
    \[-\frac{1}{2}\]

    D)
    1

    View Answer play_arrow
  • question_answer6) If the angle between the vectors \[\vec{A}\] and \[\vec{B}\] is \[\theta ,\] the value of the product \[(\vec{B}\times \vec{A}).\vec{A}\] is equal to: [AIPMT (S) 2005]

    A)
    \[B{{A}^{2}}\cos \theta \]

    B)
    \[B{{A}^{2}}\sin \theta \]

    C)
    \[B{{A}^{2}}\sin \theta \cos \theta \]

    D)
    zero

    View Answer play_arrow
  • question_answer7) 
    The vectors \[\vec{A}\] and \[\vec{B}\] are such that a:
    \[\left| \vec{A}+\vec{B} \right|=\left| \vec{A}-\vec{B} \right|\]
    The angle between the two vectors is: [AIPMT (S) 2006]

    A)
    \[{{90}^{o}}\]

    B)
    \[{{60}^{o}}\]

    C)
    \[{{75}^{o}}\]

    D)
    \[{{45}^{o}}\]

    View Answer play_arrow
  • question_answer8) \[\vec{A}\] and \[\vec{B}\] are two vectors and \[\theta \] is the angle between them, if \[|\vec{A}\times \vec{B}|=\sqrt{3}\,(\vec{A}\,\centerdot \,\vec{B})\] the value of \[\theta \] is:                                      [AIPMT (S) 2007]

    A)
    \[{{60}^{o}}\]

    B)
    \[{{45}^{o}}\]

    C)
    \[{{30}^{o}}\]

    D)
    \[{{90}^{o}}\]

    View Answer play_arrow
  • question_answer9) 
    Six vectors \[\overset{\to }{\mathop{\mathbf{a}}}\,\] through \[\overset{\to }{\mathop{\mathbf{f}}}\,\] have the magnitudes and directions indicated in the figure. Which of the following statements is true? [AIPMT (S) 2010]

    A)
    \[\overset{\to }{\mathop{\mathbf{b}}}\,\,+\overset{\to }{\mathop{\mathbf{c}}}\,=\overset{\to }{\mathop{\mathbf{f}}}\,\]

    B)
    \[\overset{\to }{\mathop{\mathbf{d}}}\,\,+\overset{\to }{\mathop{\mathbf{c}}}\,=\overset{\to }{\mathop{\mathbf{f}}}\,\]       

    C)
    \[\overset{\to }{\mathop{\mathbf{d}}}\,\,+\overset{\to }{\mathop{\mathbf{e}}}\,=\overset{\to }{\mathop{\mathbf{f}}}\,\]

    D)
    \[\overset{\to }{\mathop{\mathbf{b}}}\,\,+\overset{\to }{\mathop{\mathbf{e}}}\,=\overset{\to }{\mathop{\mathbf{f}}}\,\]

    View Answer play_arrow
  • question_answer10) If vectors \[A=\cos \omega t+\hat{i}+\sin \omega t\,\hat{j}\] and\[B=\cos \frac{\omega t}{2}\hat{i}+\sin \frac{\omega t}{2}\hat{j}\] are functions of time, then the value of t at which they are orthogonal to each other                                [NEET 2015 (Re)]

    A)
    \[t=\frac{\pi }{4\omega }\]

    B)
    \[t=\frac{\pi }{2\omega }\]

    C)
    \[t=\frac{\pi }{\omega }\]

    D)
    \[t=0\]

    View Answer play_arrow
  • question_answer11) Two particles A and B, move with constant velocities \[{{v}_{1}}\] and \[{{v}_{2}}\]. At the initial moment, their position vectors are \[{{r}_{1}}\] and \[{{r}_{2}}\] respectively. The condition for particles A and B for their collision is   [NEET 2015 (Re)]

    A)
    \[\frac{{{r}_{1}}-{{r}_{2}}}{\left| {{r}_{1}}-{{r}_{2}} \right|}=\frac{{{v}_{2}}-{{v}_{1}}}{\left| {{v}_{3}}-{{v}_{1}} \right|}\]

    B)
    \[{{r}_{1}}\cdot {{v}_{1}}={{r}_{2}}\cdot {{v}_{2}}\]

    C)
    \[{{r}_{1}}\times {{v}_{1}}={{r}_{2}}\times {{v}_{2}}\]

    D)
    \[{{r}_{1}}-{{r}_{2}}={{v}_{1}}-{{v}_{2}}\]

    View Answer play_arrow
  • question_answer12) If the magnitude of sum of two vectors is equal to the magnitude of difference of the two vectors, the angle between these vectors is       [NEET - 2016]

    A)
    \[{{0}^{o}}\]  

    B)
    \[{{90}^{o}}\]

    C)
    \[{{45}^{o}}\]

    D)
    \[{{180}^{o}}\]

    View Answer play_arrow
  • question_answer13) A gas mixture consists of 2 moles of \[{{O}_{2}}\] and 4 moles of Ar at temperature T. Neglecting all vibrational modes, the total internal energy of the system is                                  [NEET-2017]

    A)
    \[11\,\,RT\]

    B)
    \[4\,RT\]

    C)
    \[15\,RT\]

    D)
    \[9\,RT\]

    View Answer play_arrow

Study Package

NEET PYQ-Vectors
 

   


You need to login to perform this action.
You will be redirected in 3 sec spinner