10th Class Mathematics Solved Paper - Mathematics-2015 Outside Delhi Term-II Set-I

  • question_answer
    In figure 3, two tangents RQ and RP are drawn from an external point R to the circle with centre O. If \[\angle PRQ=120{}^\circ \], then prove that, \[OR=PR+RQ\].

    Answer:

    O is the centre of the circle and \[\angle PRQ=120{}^\circ \]
    Construction: Join \[OP,OQ\]
    To prove: \[OP=PR+RQ\]
    Proof: We know that,
    Tangent to a circle is perpendicular to the radius at the point of tangent i.e., \[OP\bot RP\] and \[OQ\bot RQ\].
    \[\therefore \angle OPR=\angle OQR=90{}^\circ \]
    Now, in \[\Delta \,OPR\] and \[\Delta \,OQR\],
                                   \[OP=OQ\]                         [Radius of circle]
                                   \[OR=OR\]             [Common]
                \[\angle OPR=\angle OQR=90{}^\circ \]              [Each\[90{}^\circ \]]
    \[\therefore \Delta \,OPR\cong \Delta \,OQR\]          [By SSA congruence]
    So,                   \[PR=QR\]                     [By c.p.c.t.]
    and                   \[\angle ORP=\angle ORQ\]
                            \[=\frac{120{}^\circ }{2}=60{}^\circ \]
    Now, in \[\Delta \,OPR\]
                            \[\cos \,\,60{}^\circ =\frac{PR}{OR}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left[ \because \,\cos \theta =\frac{\text{Base}}{\text{Hypotenuse}} \right]\]
                            \[\frac{1}{2}=\frac{PR}{OQ}\]
                            \[OR=2PR\]
                            \[OR=PR+PR\]
                            \[OR=PR+RQ\]              \[[\because \,PR=RQ]\]
    Hence,              \[OR=PR+RQ\]              Hence Proved.


You need to login to perform this action.
You will be redirected in 3 sec spinner