10th Class Mathematics Solved Paper - Mathematics-2016 Outside Delhi Set-I

  • question_answer 8) Prove that the points (3, 0), (6, 4) and (\[1,\text{ }3\]) are the vertices of a right angled isosceles triangle.

    Answer:

    Let \[A(3,0),\text{ }B(6,4)\] and \[C(-1,3)\] be the vertices of a triangle \[ABC\].
    Length of                       \[AB=\sqrt{{{(6-3)}^{2}}+{{(4-0)}^{2}}}\]
                                        \[=\sqrt{{{(3)}^{2}}+{{(4)}^{2}}}\]
                                        \[=\sqrt{9+16}=\sqrt{25}=5\,\]units
    Length of                       \[BC=\sqrt{{{(-1-6)}^{2}}+{{(3-4)}^{2}}}\]
                                        \[=\sqrt{{{(-7)}^{2}}+{{(-1)}^{2}}}\]
                                        \[=\sqrt{49+1}=\sqrt{50}=5\sqrt{2}\] units.
    And Length of    \[AC=\sqrt{{{(-1-3)}^{2}}+{{(3-0)}^{2}}}\]
                                        \[=\sqrt{{{(-4)}^{2}}+{{(3)}^{2}}}\]
                                        \[=\sqrt{16+9}=\sqrt{25}=5\] units
    \[\therefore \]                         \[AB=AC\]
    And         \[{{(AB)}^{2}}+{{(AC)}^{2}}={{(BC)}^{2}}\]
    Hence, \[\Delta \text{ }ABC\] is a isosceles, right angled triangle.                              Hence Proved


adversite



LIMITED OFFER HURRY UP! OFFER AVAILABLE ON ALL MATERIAL TILL TODAY ONLY!

You need to login to perform this action.
You will be redirected in 3 sec spinner

Free
Videos