VMMC VMMC Medical Solved Paper-2015

  • question_answer
    Equivalent conductance of\[BaC{{1}_{2,}}{{H}_{2}}S{{O}_{4}}\], and \[HCl\] are \[{{x}_{1,}}{{x}_{2}}\] and \[{{x}_{3}}\]\[Sc{{m}^{2}}\]\[equi{{v}^{-2}}\] at infinite dilution, if specific conductance of saturated \[BaS{{O}_{4}}\] solution is \[y\,S\,c{{m}^{-1}}\]then \[{{K}_{sp}}\] of\[BaS{{O}_{4}}\] is

    A) \[\frac{10_{y}^{3}}{2({{x}_{1}}+{{x}_{2}}-2{{x}_{3}})}\]  

    B) \[\frac{{{10}^{6}}{{y}^{2}}}{{{(x+{{x}_{2}}-2{{x}_{3}})}^{2}}}\]

    C) \[\frac{{{10}^{6}}{{y}^{2}}}{4{{({{x}_{1}}+{{x}_{2}}-2{{x}_{3}})}^{2}}}\]   

    D) \[\frac{{{x}_{1}}+{{x}_{2}}-2{{x}_{3}}}{{{10}^{6}}{{y}^{2}}}\]

    Correct Answer: C

    Solution :

    \[{{\Alpha }_{BaS{{O}_{4}}}}={{\Alpha }_{BaC{{l}_{2}}}}+{{\Alpha }_{{{H}_{2}}S{{O}_{4}}}}-2\times {{\Alpha }_{HCl}}\] \[={{x}_{1}}+{{x}_{2}}-2{{x}_{3}}\] \[{{\Alpha }_{BaS{{O}_{4}}}}=\frac{1000\times k}{\text{Normality}}\] \[\text{Molarity}=\frac{{{10}^{3}}\times y}{{{x}_{1}}+{{x}_{2}}-2{{x}_{3}}}\] For \[\text{BaS}{{\text{O}}_{\text{4}}}\text{,}{{\text{K}}_{\text{sp}}}={{s}^{2}}-{{\left[ \frac{{{10}^{3}}\times y}{2({{x}_{1}}+{{x}_{2}}-2{{x}_{3}})} \right]}^{2}}\] \[\frac{{{10}^{6}}\times {{y}^{2}}}{4{{({{x}_{1}}+{{x}_{2}}-2{{x}_{3}})}^{2}}}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner