JEE Main & Advanced Physics Work, Energy, Power & Collision / कार्य, ऊर्जा और शक्ति Perfectly elastic head on collision

Perfectly elastic head on collision

Category : JEE Main & Advanced

Let two bodies of masses \[{{m}_{1}}\] and \[{{m}_{2}}\] moving with initial velocities \[{{u}_{1}}\] and \[{{u}_{2}}\] in the same direction and they collide such that after collision their final velocities are \[{{v}_{1}}\] and \[{{v}_{2}}\] respectively.

According to law of conservation of momentum

\[{{m}_{1}}{{u}_{1}}+{{m}_{2}}{{u}_{2}}={{m}_{1}}{{v}_{1}}+{{m}_{2}}{{v}_{2}}\]                                               ...(i)                                                              

\[\Rightarrow\]  \[{{m}_{1}}({{u}_{1}}-{{v}_{1}})={{m}_{2}}({{v}_{2}}-{{u}_{2}})\]                               ...(ii)

According to law of conservation of kinetic energy \

[\frac{1}{2}{{m}_{1}}u_{1}^{2}+\frac{1}{2}{{m}_{2}}u_{2}^{2}=\frac{1}{2}{{m}_{1}}v_{1}^{2}+\frac{1}{2}{{m}_{2}}v_{2}^{2}\]                     ...(iii)

\[\Rightarrow\]  \[{{m}_{1}}(u_{1}^{2}-v_{1}^{2})={{m}_{2}}(v_{2}^{2}-u_{2}^{2})\]                    ....(iv)

Dividing equation (iv) by equation (ii)

\[{{v}_{1}}+{{u}_{1}}={{v}_{2}}+{{u}_{2}}\]                                                                             ...(v)

\[\Rightarrow\]  \[{{u}_{1}}-{{u}_{2}}={{v}_{2}}-{{v}_{1}}\]                                            ...(vi)

Relative velocity of separation is equal to relative velocity of approach.

Note :

  • The ratio of relative velocity of separation and relative velocity of approach is defined as coefficient of restitution.

\[e=\frac{{{v}_{2}}-{{v}_{1}}}{{{u}_{1}}-{{u}_{2}}}\]  

or   \[{{v}_{2}}-{{v}_{1}}=e({{u}_{1}}-{{u}_{2}})\]

For perfectly elastic collision, e = 1                                                                                                        

\[\therefore\]  \[{{v}_{2}}-{{v}_{1}}={{u}_{1}}-{{u}_{2}}\]            [As shown in eq. (vi)] For perfectly inelastic collision,  e = 0

\[\therefore\]  \[{{v}_{2}}-{{v}_{1}}=0\] or \[{{v}_{2}}={{v}_{1}}\]

It means that two body stick together and move with same velocity.  

For inelastic collision,  0 < e < 1                                                                                                                                   

\[\therefore\] \[{{v}_{2}}-{{v}_{1}}=e({{u}_{1}}-{{u}_{2}})\]

In short we can say that e is the degree of elasticity of collision and it is dimensionless quantity.

Further from equation (v) we get

\[{{v}_{2}}={{v}_{1}}+{{u}_{1}}-{{u}_{2}}\]

Substituting this value of \[{{v}_{2}}\] in equation (i) and rearranging

we get,  \[{{v}_{1}}=\left( \frac{{{m}_{1}}-{{m}_{2}}}{{{m}_{1}}+{{m}_{2}}} \right)\,{{u}_{1}}+\frac{2{{m}_{2}}{{u}_{2}}}{{{m}_{1}}+{{m}_{2}}}\]                ...(vii)

Similarly we get,

\[{{v}_{2}}=\left( \frac{{{m}_{2}}-{{m}_{1}}}{{{m}_{1}}+{{m}_{2}}} \right)\,{{u}_{2}}+\frac{2{{m}_{1}}{{u}_{1}}}{{{m}_{1}}+{{m}_{2}}}\]                                 ...(viii)

(1) Special cases of head on elastic collision

(i) If projectile and target are of same mass i.e. \[{{m}_{1}}={{m}_{2}}\]

Since \[{{\upsilon }_{1}}=\left( \frac{{{m}_{1}}-{{m}_{2}}}{{{m}_{1}}+{{m}_{2}}} \right)\,{{u}_{1}}+\frac{2{{m}_{2}}}{{{m}_{1}}+{{m}_{2}}}{{u}_{2}}\]        

and   \[{{\upsilon }_{2}}=\left( \frac{{{m}_{2}}-{{m}_{1}}}{{{m}_{1}}+{{m}_{2}}} \right)\,{{u}_{2}}+\frac{2{{m}_{1}}{{u}_{1}}}{{{m}_{1}}+{{m}_{2}}}\]

Substituting \[{{m}_{1}}={{m}_{2}}\] we get  \[{{\upsilon }_{1}}={{u}_{2}}\]   and   \[{{\upsilon }_{2}}={{u}_{1}}\]

It means when two bodies of equal masses undergo head on elastic collision, their velocities get interchanged.

Example : Collision of two billiard balls

Sub case : i.e. target is at rest
 and

 

(ii) If massive projectile collides with a light target i.e. \[{{m}_{1}}>>{{m}_{2}}\]

Since \[{{\upsilon }_{1}}=\left( \frac{{{m}_{1}}-{{m}_{2}}}{{{m}_{1}}+{{m}_{2}}} \right)\,{{u}_{1}}+\frac{2{{m}_{2}}{{u}_{2}}}{{{m}_{1}}+{{m}_{2}}}\]     and    \[{{\upsilon }_{2}}=\left( \frac{{{m}_{2}}-{{m}_{1}}}{{{m}_{1}}+{{m}_{2}}} \right)\,{{u}_{2}}+\frac{2{{m}_{1}}{{u}_{1}}}{{{m}_{1}}+{{m}_{2}}}\]

Substituting \[{{m}_{2}}=0\], we get \[{{\upsilon }_{1}}={{u}_{1}}\]and \[{{\upsilon }_{2}}=2{{u}_{1}}-{{u}_{2}}\]

Example : Collision of a truck with a cyclist

Before collision

After collision.

Sub case : i.e. target is at rest
 and

(iii) If light projectile collides with a very heavy target i.e. \[{{m}_{1}}<<{{m}_{2}}\]

 

Since \[{{\upsilon }_{1}}=\left( \frac{{{m}_{1}}-{{m}_{2}}}{{{m}_{1}}+{{m}_{2}}} \right)\,{{u}_{1}}+\frac{2{{m}_{2}}{{u}_{2}}}{{{m}_{1}}+{{m}_{2}}}\] and \[{{\upsilon }_{2}}=\left( \frac{{{m}_{2}}-{{m}_{1}}}{{{m}_{1}}+{{m}_{2}}} \right)\,{{u}_{2}}+\frac{2{{m}_{1}}{{u}_{1}}}{{{m}_{1}}+{{m}_{2}}}\]

Substituting \[{{m}_{1}}=0\], we get  

\[{{\upsilon }_{1}}=-\,{{u}_{1}}+2{{u}_{2}}\]and \[{{\upsilon }_{2}}={{u}_{2}}\]

Example : Collision of a ball with a massive wall.

(2) Kinetic energy transfer during head on elastic collision

Kinetic energy of projectile before collision \[{{K}_{i}}=\frac{1}{2}{{m}_{1}}u_{1}^{2}\]

Kinetic energy of projectile after collision \[{{K}_{f}}=\frac{1}{2}{{m}_{1}}v_{1}^{2}\]

Kinetic energy transferred from projectile to target \[\Delta K=\] decrease in kinetic energy in projectile   

\[\Delta K=\frac{1}{2}{{m}_{1}}u_{1}^{2}-\frac{1}{2}{{m}_{1}}v_{1}^{2}\]  \[=\frac{1}{2}{{m}_{1}}(u_{1}^{2}-v_{1}^{2})\]

Fractional decrease in kinetic energy

\[\frac{\Delta K}{K}=\frac{\frac{1}{2}{{m}_{1}}(u_{1}^{2}-v_{1}^{2})}{\frac{1}{2}{{m}_{1}}u_{1}^{2}}\]\[=1-{{\left( \frac{{{v}_{1}}}{{{u}_{1}}} \right)}^{2}}\]                               ...(i)

We can substitute the value of \[{{v}_{1}}\] from the equation

\[{{v}_{1}}=\left( \frac{{{m}_{1}}-{{m}_{2}}}{{{m}_{1}}+{{m}_{2}}} \right)\,{{u}_{1}}+\frac{2{{m}_{2}}{{u}_{2}}}{{{m}_{1}}+{{m}_{2}}}\]

If the target is at rest i.e.\[{{\upsilon }_{2}}=0\] then \[{{v}_{1}}=\left( \frac{{{m}_{1}}-{{m}_{2}}}{{{m}_{1}}+{{m}_{2}}} \right)\,{{u}_{1}}\]

From equation (i) \[\frac{\Delta K}{K}=1-{{\left( \frac{{{m}_{1}}-{{m}_{2}}}{{{m}_{1}}+{{m}_{2}}} \right)}^{2}}\]                ...(ii)

or \[\frac{\Delta K}{K}=\frac{4{{m}_{1}}{{m}_{2}}}{{{({{m}_{1}}+{{m}_{2}})}^{2}}}\]                                              ...(iii)       

or \[\frac{\Delta K}{K}=\frac{4{{m}_{1}}{{m}_{2}}}{{{({{m}_{1}}-{{m}_{2}})}^{2}}+4{{m}_{1}}{{m}_{2}}}\]                            ...(iv)

Note :

  • Greater the difference in masses, lesser will be transfer of kinetic energy and vice versa
  • Transfer of kinetic energy will be maximum when the difference in masses is minimum

i.e. \[{{m}_{1}}-{{m}_{2}}=0\] or \[{{m}_{1}}={{m}_{2}}\] then                 \[\frac{\Delta K}{K}=1=100%\]

So the transfer of kinetic energy in head on elastic collision (when target is at rest) is maximum when the masses of particles are equal i.e. mass ratio is 1 and the transfer of kinetic energy is 100%.

  • If \[{{m}_{2}}=n\,{{m}_{1}}\] then from equation (iii) we get   \[\frac{\Delta K}{K}=\frac{4n}{{{(1+n)}^{2}}}\]            
  • Kinetic energy retained by the projectile  \[{{\left( \frac{\Delta K}{K} \right)}_{\text{Retained}}}=1-\] kinetic energy transferred by projectile

\[\Rightarrow \]          \[{{\left( \frac{\Delta K}{K} \right)}_{\text{Retained}}}=\]\[1-\left[ 1-{{\left( \frac{{{m}_{1}}-{{m}_{2}}}{{{m}_{1}}+{{m}_{2}}} \right)}^{2}} \right]\]\[={{\left( \frac{{{m}_{1}}-{{m}_{2}}}{{{m}_{1}}+{{m}_{2}}} \right)}^{2}}\]

(3) Velocity, momentum and kinetic energy of stationary target after head on elastic collision

(i) Velocity of target : We know

\[{{v}_{2}}=\left( \frac{{{m}_{\text{2}}}-{{m}_{1}}}{{{m}_{\text{1}}}+{{m}_{2}}} \right)\,{{u}_{2}}+\frac{2{{m}_{1}}{{u}_{1}}}{{{m}_{\text{1}}}+{{m}_{2}}}\]

\[\Rightarrow \]  \[{{v}_{2}}=\frac{2{{m}_{1}}{{u}_{1}}}{{{m}_{\text{1}}}+{{m}_{2}}}\]

\[=\frac{2{{u}_{1}}}{1+{{m}_{2}}/{{m}_{1}}}\] As \[{{\upsilon }_{2}}=0\] and

Assuming \[\frac{{{m}_{2}}}{{{m}_{1}}}=n\]

\[\therefore \] \[{{v}_{2}}=\frac{2{{u}_{1}}}{1+n}\]

(ii) Momentum of target : \[{{P}_{2}}={{m}_{2}}{{v}_{2}}\]\[=\frac{2n{{m}_{1}}{{u}_{1}}}{1+n}\]                                                                     \[\left[ \text{As }{{m}_{2}}={{m}_{1}}n\text{ and }{{v}_{2}}=\frac{2{{u}_{1}}}{1+n} \right]\]

\[\therefore \] \[{{P}_{2}}=\frac{2{{m}_{1}}{{u}_{1}}}{1+(1/n)}\]

(iii) Kinetic energy of target : \[{{K}_{2}}=\frac{1}{2}{{m}_{2}}v_{2}^{2}\]\[=\frac{1}{2}n\,{{m}_{1}}{{\left( \frac{2{{u}_{1}}}{1+n} \right)}^{2}}\]\[=\frac{2\,{{m}_{1}}u_{1}^{2}n}{{{(1+n)}^{2}}}\]

\[=\frac{4({{K}_{1}})n}{{{(1-n)}^{2}}+4n}\]                 \[\left[ \text{ As }{{K}_{1}}=\frac{1}{2}{{m}_{1}}u_{1}^{2} \right]\]

(iv) Relation between masses for maximum velocity, momentum and kinetic energy

Velocity \[{{\upsilon }_{2}}=\frac{2{{u}_{1}}}{1+n}\]

For \[{{\upsilon }_{2}}\] to be maximum n must be minimum

i.e. \[n=\frac{{{m}_{2}}}{{{m}_{1}}}\to 0\]\[\therefore \]\[{{m}_{2}}<<{{m}_{1}}\]

Target should be very light.
Momentum \[{{P}_{2}}=\frac{2{{m}_{1}}{{u}_{1}}}{(1+1/n)}\]

For \[{{P}_{2}}\] to be maximum, (1/n) must be minimum or n must be maximum.

i.e.           \[n=\frac{{{m}_{2}}}{{{m}_{1}}}\to \infty \]\[\therefore \] \[{{m}_{2}}>>{{m}_{1}}\]

Target should be massive.
Kinetic energy \[{{K}_{2}}=\frac{4{{K}_{1}}\,n}{{{(1-n)}^{2}}+4n}\]

For \[{{K}_{2}}\] to be maximum \[{{(1-n)}^{2}}\] must be minimum.

i.e.           \[1-n=0\,\Rightarrow \,n=1=\frac{{{m}_{2}}}{{{m}_{1}}}\]\[\therefore \] \[{{m}_{2}}={{m}_{1}}\]

Target and projectile should be of equal mass.


You need to login to perform this action.
You will be redirected in 3 sec spinner