-
question_answer1)
If \[x=\sqrt{1+\sqrt{1+\sqrt{1+.......\text{to infinity}}}},\]then x =
A)
\[\frac{1+\sqrt{5}}{2}\] done
clear
B)
\[\frac{1-\sqrt{5}}{2}\] done
clear
C)
\[\frac{1\pm \sqrt{5}}{2}\] done
clear
D)
None of these done
clear
View Solution play_arrow
-
question_answer2)
For the equation \[|{{x}^{2}}|+|x|-6=0\], the roots are [EAMCET 1988, 93]
A)
One and only one real number done
clear
B)
Real with sum one done
clear
C)
Real with sum zero done
clear
D)
Real with product zero done
clear
View Solution play_arrow
-
question_answer3)
If\[a{{x}^{2}}+bx+c=0\], then x = [MP PET 1995]
A)
\[\frac{b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\] done
clear
B)
\[\frac{-b\pm \sqrt{{{b}^{2}}-ac}}{2a}\] done
clear
C)
\[\frac{2c}{-b\pm \sqrt{{{b}^{2}}-4ac}}\] done
clear
D)
None of these done
clear
View Solution play_arrow
-
question_answer4)
If the equations \[2{{x}^{2}}+3x+5\lambda =0\] and \[{{x}^{2}}+2x+3\lambda =0\] have a common root, then \[\lambda =\] [RPET 1989]
A)
0 done
clear
B)
-1 done
clear
C)
\[0,-1\] done
clear
D)
2,-1 done
clear
View Solution play_arrow
-
question_answer5)
If the equation \[{{x}^{2}}+\lambda x+\mu =0\] has equal roots and one root of the equation \[{{x}^{2}}+\lambda x-12=0\]is 2, then \[(\lambda ,\mu )\]=
A)
(4, 4) done
clear
B)
(-4,4) done
clear
C)
\[(4,-4)\] done
clear
D)
\[(-4,-4)\] done
clear
View Solution play_arrow
-
question_answer6)
If \[x\]is real and \[k=\frac{{{x}^{2}}-x+1}{{{x}^{2}}+x+1},\] then [MNR 1992; RPET 1997]
A)
\[\frac{1}{3}\le k\le 3\] done
clear
B)
\[k\ge 5\] done
clear
C)
\[k\le 0\] done
clear
D)
None of these done
clear
View Solution play_arrow
-
question_answer7)
If \[a<b<c<d\], then the roots of the equation \[(x-a)(x-c)+2(x-b)(x-d)=0\] are [IIT 1984]
A)
Real and distinct done
clear
B)
Real and equal done
clear
C)
Imaginary done
clear
D)
None of these done
clear
View Solution play_arrow
-
question_answer8)
If the roots of the equation \[q{{x}^{2}}+px+q=0\]where p, q are real, be complex, then the roots of the equation \[{{x}^{2}}-4qx+{{p}^{2}}=0\] are
A)
Real and unequal done
clear
B)
Real and equal done
clear
C)
Imaginary done
clear
D)
None of these done
clear
View Solution play_arrow
-
question_answer9)
The values of \['a'\] for which \[({{a}^{2}}-1){{x}^{2}}+2(a-1)x+2\] is positive for any \[x\] are [UPSEAT 2001]
A)
\[a\ge 1\] done
clear
B)
\[a\le 1\] done
clear
C)
\[a>-3\] done
clear
D)
\[a<-3\]or \[a>1\] done
clear
View Solution play_arrow
-
question_answer10)
If the roots of equation \[\frac{{{x}^{2}}-bx}{ax-c}=\frac{m-1}{m+1}\]are equal but opposite in sign, then the value of \[m\] will be [RPET 1988, 2001; MP PET 1996, 2002; Pb. CET 2000]
A)
\[\frac{a-b}{a+b}\] done
clear
B)
\[\frac{b-a}{a+b}\] done
clear
C)
\[\frac{a+b}{a-b}\] done
clear
D)
\[\frac{b+a}{b-a}\] done
clear
View Solution play_arrow
-
question_answer11)
The coefficient of \[x\] in the equation \[{{x}^{2}}+px+q=0\]was taken as 17 in place of 13, its roots were found to be -2 and -15, The roots of the original equation are [IIT 1977, 79]
A)
3, 10 done
clear
B)
- 3, - 10 done
clear
C)
- 5, - 18 done
clear
D)
None of these done
clear
View Solution play_arrow
-
question_answer12)
If one root of the equation \[a{{x}^{2}}+bx+c=0\]be \[n\] times the other root, then
A)
\[n{{a}^{2}}=bc{{(n+1)}^{2}}\] done
clear
B)
\[n{{b}^{2}}=ac{{(n+1)}^{2}}\] done
clear
C)
\[n{{c}^{2}}=ab{{(n+1)}^{2}}\] done
clear
D)
None of these done
clear
View Solution play_arrow
-
question_answer13)
If one root of the quadratic equation \[a{{x}^{2}}+bx+c=0\] is equal to the nth power of the other root, then the value of \[{{(a{{c}^{n}})}^{\frac{1}{n+1}}}+{{({{a}^{n}}c)}^{\frac{1}{n+1}}}=\] [IIT 1983]
A)
\[b\] done
clear
B)
- b done
clear
C)
\[{{b}^{\frac{1}{n+1}}}\] done
clear
D)
\[-{{b}^{\frac{1}{n+1}}}\] done
clear
View Solution play_arrow
-
question_answer14)
If \[\sin \alpha ,\cos \alpha \] are the roots of the equation \[a{{x}^{2}}+bx+c=0\], then [MP PET 1993]
A)
\[{{a}^{2}}-{{b}^{2}}+2ac=0\] done
clear
B)
\[{{(a-c)}^{2}}={{b}^{2}}+{{c}^{2}}\] done
clear
C)
\[{{a}^{2}}+{{b}^{2}}-2ac=0\] done
clear
D)
\[{{a}^{2}}+{{b}^{2}}+2ac=0\] done
clear
View Solution play_arrow
-
question_answer15)
If both the roots of the quadratic equation\[{{x}^{2}}-2kx+{{k}^{2}}+k-5=0\]are less than 5, then \[k\] lies in the interval [AIEEE 2005]
A)
\[(-\infty ,\,4)\] done
clear
B)
[4, 5] done
clear
C)
(5, 6] done
clear
D)
(6, \[\infty \]) done
clear
View Solution play_arrow
-
question_answer16)
If the roots of the equations \[{{x}^{2}}-bx+c=0\] and \[{{x}^{2}}-cx+b=0\] differ by the same quantity, then \[b+c\] is equal to [BIT Ranchi 1969; MP PET 1993]
A)
4 done
clear
B)
1 done
clear
C)
0 done
clear
D)
-4 done
clear
View Solution play_arrow
-
question_answer17)
If the product of roots of the equation\[{{x}^{2}}-3kx+2{{e}^{2\log k}}-1=0\]is 7, then its roots will real when [IIT 1984]
A)
\[k=1\] done
clear
B)
\[k=2\] done
clear
C)
\[k=3\] done
clear
D)
None of these done
clear
View Solution play_arrow
-
question_answer18)
If a root of the given equation \[a(b-c){{x}^{2}}+b(c-a)x+c(a-b)=0\]is 1, then the other will be [RPET 1986]
A)
\[\frac{a(b-c)}{b(c-a)}\] done
clear
B)
\[\frac{b(c-a)}{a(b-c)}\] done
clear
C)
\[\frac{c(a-b)}{a(b-c)}\] done
clear
D)
None of these done
clear
View Solution play_arrow
-
question_answer19)
In a triangle \[ABC\] the value of \[\angle A\] is given by \[5\cos A+3=0\], then the equation whose roots are \[\sin A\] and \[\tan A\] will be [Roorkee 1972]
A)
\[15{{x}^{2}}-8x+16=0\] done
clear
B)
\[15{{x}^{2}}+8x-16=0\] done
clear
C)
\[15{{x}^{2}}-8\sqrt{2}x+16=0\] done
clear
D)
\[15{{x}^{2}}-8x-16=0\] done
clear
View Solution play_arrow
-
question_answer20)
If one root of the equation \[a{{x}^{2}}+bx+c=0\]the square of the other, then\[a{{(c-b)}^{3}}=cX\], where X is
A)
\[{{a}^{3}}+{{b}^{3}}\] done
clear
B)
\[{{(a-b)}^{3}}\] done
clear
C)
\[{{a}^{3}}-{{b}^{3}}\] done
clear
D)
None of these done
clear
View Solution play_arrow
-
question_answer21)
If 8, 2 are the roots of \[{{x}^{2}}+ax+\beta =0\] and 3, 3 are the roots of \[{{x}^{2}}+\alpha \,x+b=0\], then the roots of \[{{x}^{2}}+ax+b=0\] are [EAMCET 1987]
A)
\[8,\,-1\] done
clear
B)
- 9, 2 done
clear
C)
\[-8,-2\] done
clear
D)
9, 1 done
clear
View Solution play_arrow
-
question_answer22)
The set of values of \[x\] which satisfy \[5x+2<3x+8\] and \[\frac{x+2}{x-1}<4,\] is [EAMCET 1989]
A)
\[(2,\,3)\] done
clear
B)
\[(-\infty ,\,1)\cup (2,\,3)\] done
clear
C)
\[(-\infty ,\,1)\] done
clear
D)
\[(1,\,3)\] done
clear
View Solution play_arrow
-
question_answer23)
If \[\alpha ,\beta \]are the roots of \[{{x}^{2}}-ax+b=0\] and if \[{{\alpha }^{n}}+{{\beta }^{n}}={{V}_{n}}\], then [RPET 1995; Karnataka CET 2000; Pb. CET 2002]
A)
\[{{V}_{n+1}}=a{{V}_{n}}+b{{V}_{n-1}}\] done
clear
B)
\[{{V}_{n+1}}=a{{V}_{n}}+a{{V}_{n-1}}\] done
clear
C)
\[{{V}_{n+1}}=a{{V}_{n}}-b{{V}_{n-1}}\] done
clear
D)
\[{{V}_{n+1}}=a{{V}_{n-1}}-b{{V}_{n}}\] done
clear
View Solution play_arrow
-
question_answer24)
The value of ?\[c\]?for which \[|{{\alpha }^{2}}-{{\beta }^{2}}|=\frac{7}{4}\], where \[\alpha \] and \[\beta \] are the roots of \[2{{x}^{2}}+7x+c=0\], is
A)
4 done
clear
B)
0 done
clear
C)
6 done
clear
D)
2 done
clear
View Solution play_arrow
-
question_answer25)
For what value of \[\lambda \]the sum of the squares of the roots of \[{{x}^{2}}+(2+\lambda )\,x-\frac{1}{2}(1+\lambda )=0\] is minimum [AMU 1999]
A)
3/2 done
clear
B)
1 done
clear
C)
1/2 done
clear
D)
11/4 done
clear
View Solution play_arrow
-
question_answer26)
The product of all real roots of the equation \[{{x}^{2}}-|x|-\,6=0\] is [Roorkee 2000]
A)
- 9 done
clear
B)
6 done
clear
C)
9 done
clear
D)
36 done
clear
View Solution play_arrow
-
question_answer27)
For the equation \[3{{x}^{2}}+px+3=0,\,p>0\] if one of the root is square of the other, then p is equal to [IIT Screening 2000]
A)
\[\frac{1}{3}\] done
clear
B)
1 done
clear
C)
3 done
clear
D)
\[\frac{2}{3}\] done
clear
View Solution play_arrow
-
question_answer28)
If a, b be the roots of \[{{x}^{2}}+px+q=0\] and \[\alpha +h,\,\beta +h\] are the roots of \[{{x}^{2}}+rx+s=0\], then [AMU 2001]
A)
\[\frac{p}{r}=\frac{q}{s}\] done
clear
B)
\[2h=\left[ \frac{p}{q}+\frac{r}{s} \right]\] done
clear
C)
\[{{p}^{2}}-4q={{r}^{2}}-4s\] done
clear
D)
\[p{{r}^{2}}=q{{s}^{2}}\] done
clear
View Solution play_arrow
-
question_answer29)
If \[{{x}^{2}}+px+q=0\] is the quadratic equation whose roots are a - 2 and b - 2 where a and b are the roots of \[{{x}^{2}}-3x+1=0\], then [Kerala (Engg.) 2002]
A)
\[p=1,\,q=5\] done
clear
B)
\[p=1,\,q=-5\] done
clear
C)
\[p=-1,\,\,q=1\] done
clear
D)
None of these done
clear
View Solution play_arrow
-
question_answer30)
The value of 'a' for which one root of the quadratic equation \[({{a}^{2}}-5a+3){{x}^{2}}+(3a-1)x+2=0\] is twice as large as the other, is [AIEEE 2003]
A)
\[\frac{2}{3}\] done
clear
B)
\[-\frac{2}{3}\] done
clear
C)
\[\frac{1}{3}\] done
clear
D)
\[-\frac{1}{3}\] done
clear
View Solution play_arrow
-
question_answer31)
If \[a,b,c\] are in G.P., then the equations \[a{{x}^{2}}+2bx+c=0\] and \[d{{x}^{2}}+2ex+f=0\] have a common root if \[\frac{d}{a},\frac{e}{b},\frac{f}{c}\] are in [IIT 1985; Pb. CET 2000; DCE 2000]
A)
A.P. done
clear
B)
G.P. done
clear
C)
H.P. done
clear
D)
None of these done
clear
View Solution play_arrow
-
question_answer32)
The value of 'a' for which the equations \[{{x}^{2}}-3x+a=0\] and \[{{x}^{2}}+ax-3=0\] have a common root is [Pb. CET 1999]
A)
3 done
clear
B)
1 done
clear
C)
- 2 done
clear
D)
2 done
clear
View Solution play_arrow
-
question_answer33)
If \[(x+1)\] is a factor of\[{{x}^{4}}-(p-3){{x}^{3}}-(3p-5){{x}^{2}}\] \[+(2p-7)x+6\], then \[p=\] [IIT 1975]
A)
4 done
clear
B)
2 done
clear
C)
1 done
clear
D)
None of these done
clear
View Solution play_arrow
-
question_answer34)
The roots of the equation\[4{{x}^{4}}-24{{x}^{3}}+57{{x}^{2}}+18x-45=0\], If one of them is\[3+i\sqrt{6}\], are
A)
\[3-i\sqrt{6},\pm \sqrt{\frac{3}{2}}\] done
clear
B)
\[3-i\sqrt{6},\pm \frac{3}{\sqrt{2}}\] done
clear
C)
\[3-i\sqrt{6},\pm \frac{\sqrt{3}}{2}\] done
clear
D)
None of these done
clear
View Solution play_arrow
-
question_answer35)
The values of a for which \[2{{x}^{2}}-2\,(2a+1)\,\,x+a(a+1)=0\] may have one root less than a and other root greater than a are given by [UPSEAT 2001]
A)
\[1>a>0\] done
clear
B)
\[-1<a<0\] done
clear
C)
\[a\ge 0\] done
clear
D)
\[a>0\,\,\text{or }a<-1\] done
clear
View Solution play_arrow
-
question_answer36)
Let \[a,b,c\] be real numbers \[a\ne 0\]. If \[\alpha \]is a root \[{{a}^{2}}{{x}^{2}}+bx+c=0\], \[\beta \] is a root of \[{{a}^{2}}{{x}^{2}}-bx-c=0\] and \[0<\alpha <\beta \], then the equation \[{{a}^{2}}{{x}^{2}}+2bx+2c=0\]has a root \[\gamma \]that always satisfies [IIT 1989]
A)
\[\gamma =\frac{\alpha +\beta }{2}\] done
clear
B)
\[\gamma =\alpha +\frac{\beta }{2}\] done
clear
C)
\[\gamma =\alpha \] done
clear
D)
\[\alpha <\gamma <\beta \] done
clear
View Solution play_arrow
-
question_answer37)
If a, b, g are roots of equation \[{{x}^{3}}+a{{x}^{2}}+bx+c=0\], then \[{{\alpha }^{-1}}+{{\beta }^{-1}}+{{\gamma }^{-1}}=\] [EAMCET 2002]
A)
a/c done
clear
B)
- b/c done
clear
C)
b/a done
clear
D)
c/a done
clear
View Solution play_arrow
-
question_answer38)
If \[\frac{2x}{2{{x}^{2}}+5x+2}\]>\[\frac{1}{x+1}\], then [IIT 1987]
A)
\[-2>x>-1\] done
clear
B)
\[-2\ge x\ge -1\] done
clear
C)
\[-2<x<-1\] done
clear
D)
\[-2<x\le -1\] done
clear
View Solution play_arrow
-
question_answer39)
If \[a<0\] then the inequality \[a{{x}^{2}}-2x+4>0\] has the solution represented by [AMU 2001]
A)
\[\frac{1+\sqrt{1-4a}}{a}>x>\frac{1-\sqrt{1-4a}}{a}\] done
clear
B)
\[x<\frac{1-\sqrt{1-4a}}{a}\] done
clear
C)
x < 2 done
clear
D)
\[2>x>\frac{1+\sqrt{1-4a}}{a}\] done
clear
View Solution play_arrow
-
question_answer40)
The two roots of an equation \[{{x}^{3}}-9{{x}^{2}}+14x+24=0\] are in the ratio 3 : 2. The roots will be [UPSEAT 1999]
A)
6, 4, - 1 done
clear
B)
6, 4, 1 done
clear
C)
- 6, 4, 1 done
clear
D)
- 6, - 4, 1 done
clear
View Solution play_arrow